Cardiac Phenotypes and Endophenotypes in Schizophrenia : A systematic Review

##plugins.themes.academic_pro.article.main##

Amine Larnaout
Zeynab Jebberi
Mohamed Salah Hamdi
Rania Lansari
Mohamed Sami Mourali
Wahid Melki

Abstract

Background: Schizophrenia is increasingly recognized as a multisystemic disorder. Cardiac anomalies, including autonomic, electrophysiological, and structural heart abnormalities, are frequently reported in patients with schizophrenia. However, the distinction between phenotypes and endophenotypes remains unclear.


Methods: In this review, we synthesized clinical, neurobiological, and genetic evidence to assess cardiac alterations in schizophrenia and evaluate their potential as endophenotypes.


Results: Autonomic dysfunction, especially reduced heart rate variability (HRV) and impaired parasympathetic regulation, emerged as the most consistent cardiac phenotype, and the only one that fulfills the criteria for an endophenotype. In contrast, electrophysiological anomalies such as QT/QTc prolongation, T-wave changes, and some structural heart anomalies show genetic associations with schizophrenia but lack sufficient heritability and longitudinal data to be classified as endophenotypes.


Conclusion: Among all cardiac anomalies reported in schizophrenia, autonomic dysfunction, particularly HRV impairment, was the only one that fulfilled the endophenotype criteria. However, most of the reviewed studies were observational, which limits the robustness of our conclusions. Future heritability and multi-omic studies are needed to understand the complex pathogenomic interlink between mental and heart diseases.

Keywords:

Schizophrenia, heart, anomalies, phenotypes, endophenotypes

##plugins.themes.academic_pro.article.details##

References

  1. Hilker R, Helenius D, Fagerlund B, Skytthe A, Christensen K, Werge TM, et al. Is an Early Age at Illness Onset in Schizophrenia Associated With Increased Genetic Susceptibility? Analysis of Data From the Nationwide Danish Twin Register. EBioMedicine. Avr 2017;18:320‑6.
  2. Zhan N, Sham PC, So HC, Lui SSY. The genetic basis of onset age in schizophrenia: evidence and models. Front Genet. 27 juin 2023, 14:1163361.
  3. Trubetskoy V, Pardiñas AF, Qi T, Panagiotaropoulou G, Awasthi S, Bigdeli TB, et al. Mapping genomic loci implicates genes and synaptic biology in schizophrenia. Nature. 21 avr 2022;604(7906):502‑8.
  4. Gottesman II, Gould TD. The Endophenotype Concept in Psychiatry: Etymology and Strategic Intentions. AJP. 1 avr 2003;160(4):636‑45.
  5. Gershon ES, Goldin LR. Clinical methods in psychiatric genetics: I. Robustness of genetic marker investigative strategies. Acta Psychiatr Scand. août 1986;74(2):113‑8.
  6. Genkel V, Domozhirova E, Malinina E. Multimorbidity in Severe Mental Illness as Part of the Neurodevelopmental Continuum: Physical Health-Related Endophenotypes of Schizophrenia-A Narrative Review. Brain Sci. 19 juill 2024;14(7):725.
  7. Peritogiannis V, Ninou A, Samakouri M. Mortality in Schizophrenia-Spectrum Disorders: Recent Advances in Understanding and Management. Healthcare (Basel). 25 nov 2022;10(12):2366.
  8. Correll CU, Solmi M, Veronese N, Bortolato B, Rosson S, Santonastaso P, et al. Prevalence, incidence and mortality from cardiovascular disease in patients with pooled and specific severe mental illness: a large‐scale meta‐analysis of 3,211,768 patients and 113,383,368 controls. World Psychiatry. juin 2017;16(2):163‑80.
  9. Haddaway NR, Page MJ, Pritchard CC, McGuinness LA. PRISMA2020 : An R package and Shiny app for producing PRISMA 2020‐compliant flow diagrams, with interactivity for optimised digital transparency and Open Synthesis. Campbell Systematic Reviews. juin 2022;18(2):e1230.
  10. Valkonen‐Korhonen M, Tarvainen MP, Ranta‐Aho P, Karjalainen PA, Partanen J, Karhu J, et al. Heart rate variability in acute psychosis. Psychophysiology. sept 2003;40(5):716‑26.
  11. Bar K, Letzsch A, Jochum T, Wagner G, Greiner W, Sauer H. Loss of efferent vagal activity in acute schizophrenia. Journal of Psychiatric Research. sept 2005;39(5):519‑27.
  12. Mujica-Parodi LR, Yeragani V, Malaspina D. Nonlinear Complexity and Spectral Analyses of Heart Rate Variability in Medicated and Unmedicated Patients with Schizophrenia1. Neuropsychobiology. 2005;51(1):10‑5.
  13. Bär KJ, Koschke M, Boettger MK, Berger S, Kabisch A, Sauer H, et al. Acute psychosis leads to increased QT variability in patients suffering from schizophrenia. Schizophrenia Research. sept 2007;95(1‑3):115‑23.
  14. Chang JS, Yoo CS, Yi SH, Hong KH, Oh HS, Hwang JY, et al. Differential pattern of heart rate variability in patients with schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry. août 2009;33(6):991‑5.
  15. Castro MN, Vigo DE, Chu EM, Fahrer RD, De Achával D, Costanzo EY, et al. Heart rate variability response to mental arithmetic stress is abnormal in first-degree relatives of individuals with schizophrenia. Schizophrenia Research. avr 2009;109(1‑3):134‑40.
  16. Chang HA, Chang CC, Tzeng NS, Kuo TBJ, Lu RB, Huang SY. Cardiac autonomic dysregulation in acute schizophrenia. Acta Neuropsychiatr. juin 2013;25(3):155‑64.
  17. Fujii K, Ozeki Y, Okayasu H, Takano Y, Shinozaki T, Hori H, et al. QT Is Longer in Drug-Free Patients with Schizophrenia Compared with Age-Matched Healthy Subjects. McKenna PJ, éditeur. PLoS ONE. 2 juin 2014;9(6):e98555.
  18. Mäki-Marttunen T, Lines GT, Edwards AG, Tveito A, Dale AM, Einevoll GT, et al. Pleiotropic effects of schizophrenia-associated genetic variants in neuron firing and cardiac pacemaking revealed by computational modeling. Transl Psychiatry. 17 nov 2017;7(11):5.
  19. Bär K, Schumann A, Refisch A, Schulz S, Voss A, Malchow B. T95. PREVALENCE AND CONSEQUENCES OF CARDIAC AUTONOMIC DYSFUNCTION (CADF) IN 112 UNMEDICATED PATIENTS WITH SCHIZOPHRENIA. Schizophrenia Bulletin. 1 avr 2018;44(suppl_1):S152‑S152.
  20. Refisch A, Chung HY, Komatsuzaki S, Schumann A, Mühleisen TW, Nöthen MM, et al. A common variation in HCN1 is associated with heart rate variability in schizophrenia. Schizophrenia Research. mars 2021;229:73‑9.
  21. Özsoy F, Zorlu Ç, Kaya Ş. Electrocardiographic evaluation of the ventricular arrhythmia risk in patients with schizophrenia. Anadolu Psikiyatri Derg. 2021;21(2):1.
  22. Refisch A, Komatsuzaki S, Ungelenk M, Chung HY, Schumann A, Schilling SS, et al. Associations of common genetic risk variants of the muscarinic acetylcholine receptor M2 with cardiac autonomic dysfunction in patients with schizophrenia. The World Journal of Biological Psychiatry. 2 janv 2023;24(1):1‑11.
  23. Refisch A, Komatsuzaki S, Ungelenk M, Schumann A, Chung HY, Schilling SS, et al. Analysis of CACNA1C and KCNH2 Risk Variants on Cardiac Autonomic Function in Patients with Schizophrenia. Genes. 16 nov 2022;13(11):2132.
  24. Balcioglu YH. Electrocardiogram markers of atrial and ventricular repolarization abnormalities and their association with symptom severity in antipsychotic-free patients with schizophrenia. Dusunen Adam [Internet]. 2023 [cité 27 août 2025]; Disponible sur: https://dusunenadamdergisi.org/article/1594
  25. Pillinger T, Osimo EF, De Marvao A, Shah M, Francis C, Huang J, et al. Effect of polygenic risk for schizophrenia on cardiac structure and function: a UK Biobank observational study. The Lancet Psychiatry. févr 2023;10(2):98‑107.
  26. Refisch A, Papiol S, Schumann A, Malchow B, Bär KJ. Polygenic risk for psychotic disorders in relation to cardiac autonomic dysfunction in unmedicated patients with schizophrenia. Eur Arch Psychiatry Clin Neurosci. avr 2025;275(3):863‑71.
  27. Williams LM, Brown KJ, Das P, Boucsein W, Sokolov EN, Brammer MJ, et al. The dynamics of cortico-amygdala and autonomic activity over the experimental time course of fear perception. Cognitive Brain Research. sept 2004;21(1):114‑23.
  28. Williams LM, Das P, Harris AWF, Liddell BB, Brammer MJ, Olivieri G, et al. Dysregulation of Arousal and Amygdala-Prefrontal Systems in Paranoid Schizophrenia. AJP. 1 mars 2004;161(3):480‑9.
  29. McDonald C, Bullmore ET, Sham PC, Chitnis X, Wickham H, Bramon E, et al. Association of Genetic Risks for Schizophrenia and Bipolar DisorderWith Specific and Generic Brain Structural Endophenotypes. Arch Gen Psychiatry. 1 oct 2004;61(10):974.
  30. Braff DL, Tamminga CA. Endophenotypes, Epigenetics, Polygenicity and More: Irv Gottesman’s Dynamic Legacy. Schizophr Bull. janv 2017;43(1):10‑6.
  31. Clamor A, Lincoln TM, Thayer JF, Koenig J. Resting vagal activity in schizophrenia: Meta-analysis of heart rate variability as a potential endophenotype. Br J Psychiatry. janv 2016;208(1):9‑16.
  32. Zhu D, Yin J, Liang C, Luo X, Lv D, Dai Z, et al. CACNA1C (rs1006737) may be a susceptibility gene for schizophrenia: An updated meta‐analysis. Brain and Behavior. juin 2019;9(6):e01292.
  33. Hashimoto R, Ohi K, Yasuda Y, Fukumoto M, Yamamori H, Kamino K, et al. The KCNH2 gene is associated with neurocognition and the risk of schizophrenia. The World Journal of Biological Psychiatry. mars 2013;14(2):114‑20.
  34. Blom MT, Cohen D, Seldenrijk A, Penninx BWJH, Nijpels G, Stehouwer CDA, et al. Brugada Syndrome ECG Is Highly Prevalent in Schizophrenia. Circ: Arrhythmia and Electrophysiology. juin 2014;7(3):384‑91.
  35. Lemmens K, Segers VFM, Demolder M, De Keulenaer GW. Role of Neuregulin-1/ErbB2 Signaling in Endothelium-Cardiomyocyte Cross-talk. Journal of Biological Chemistry. juill 2006;281(28):19469‑77.
  36. Huertas-Vazquez A, Teodorescu C, Reinier K, Uy-Evanado A, Chugh H, Jerger K, et al. A common missense variant in the neuregulin 1 gene is associated with both schizophrenia and sudden cardiac death. Heart Rhythm. juill 2013;10(7):994‑8.
  37. Gottesman II, Gould TD. The Endophenotype Concept in Psychiatry: Etymology and Strategic Intentions. AJP. 1 avr 2003;160(4):636‑45.
  38. Postema PG. About Brugada syndrome and its prevalence. EP Europace. juill 2012;14(7):925‑8.
  39. Treur JL, Thijssen AB, Smit DJA, Tadros R, Veeneman RR, Denys D, et al. Associations of schizophrenia with arrhythmic disorders and electrocardiogram traits: genetic exploration of population samples. Br J Psychiatry. mars 2025;226(3):153‑61.