Can generative AI improve academic journal selection decisions? Assessing traditional and algorithmic approaches in medical research

##plugins.themes.academic_pro.article.main##

Jabeur Methnani
Meriem Gaddas
Houssem Thabet
Ismail Dergaa
Helmi Ben Saad

Abstract

Introduction: Journal selection is a critical step in the scientific publishing process, influencing the visibility, impact, and credibility of the published work. This task has become increasingly complex due to the proliferation of journals, predatory practices, and the diversity of editorial criteria. This narrative review presented an overview of classical tools, artificial intelligence (AI)-driven platforms, and generative models (ChatGPT, Grok) used to recommend suitable journals for an unpublished manuscript.


Methods: Six tools were tested (Springer Journal Finder, Jane, Manuscript Matcher, Trinka Journal Finder, ChatGPT, and Grok) using either the abstract or full text of a clinical article on nonspecific low back pain. The results were compared based on thematic relevance, availability of bibliometric indicators, and transparency of the recommendations.


Results: Classical tools are limited by their narrow editorial scope and the absence of key indicators. AI platforms offer broader coverage but sometimes lack precision for targeted topics. Generative tools stand out for their ability to structure recommendations, although the data provided (impact factor, fees, timelines) are often inaccurate or unverifiable. Several technological biases and algorithmic limitations impact the overall reliability of these systems.


Conclusion: While AI tools expedite initial journal identification, they frequently suggest journals outside the manuscript's scope and provide incorrect journal metrics. These systems function best as exploratory instruments rather than authoritative advisors. The most successful approach positions the researcher as the primary decision-maker who employs computational assistance to survey options while exercising scholarly judgment for final determinations.

Keywords:

Algorithmic Bias, Bibliometrics, Editorial Ethics, Impact Factor, Information Retrieval, Publication Standards, Research Dissemination, Scopus, Scimago, Software Validation, Web of Science

##plugins.themes.academic_pro.article.details##

References

  1. Saad HB. Scientific medical writing in practice: How to succeed the writing style? Tunis Med. 2019;97(2):273-85.
  2. Saad HB. Scientific medical writing in practice: the «IMR@ D®» format. Tunis Med. 2019;97(3):407-25.
  3. Laine C, Babski D, Bachelet VC, Bärnighausen TW, Baethge C, Bibbins-Domingo K, et al. Predatory journals: what can we do to protect their prey? The Lancet. 2025;405(10476):362-4.
  4. Rollins J, McCusker M, Carlson J, Stroll J. Manuscript Matcher: A content and bibliometrics-based scholarly journal recommendation system. BIR@ ECIR. 2017;9:18-29.
  5. Gaffney SG, Townsend JP. Jot: guiding journal selection with suitability metrics. J Med Libr Assoc. 2022;110(3):376-80.
  6. Albro M, Serrao JL, Vidas CD, McElfresh JM, Sheffield KM, Palmer M. Applying librarian-created evaluation tools to determine quality and credibility of open access library science journals. portal: Lib Acad. 2024;24(1):59-81.
  7. Bahadoran Z, Mirmiran P, Kashfi K, Ghasemi A. Scientific publishing in biomedicine: how to choose a journal? Int J Endocrinol Metab. 2020;19(1):e108417.
  8. Chen X. Scholarly journals’ publication frequency and number of articles in 2018–2019: A study of SCI, SSCI, CSCD, and CSSCI journals. Publications. 2019;7(3):58.
  9. Johnson R, Watkinson A, Mabe M. The STM report. An overview of scientific and scholarly publishing. 5th edition October. 2018;94. Link: https://asbir.pl/wp-content/uploads/2024/06/Johnson-R.-Mabe-M.-Watkinson-A.-2018-The-STM-Report.-An-overview-of-scientific-and-scholarly-publishing.pdf (Last visit: September 17, 2025).
  10. Saha I, Paul B. Research submission: Some technicalities and vital links. Med J Armed Forces India. 2018;74(2):165-8.
  11. Ali MF. Evaluating the correlation between different impact indicators for library and information science journals: Comparing the journal citation reports and scopus. Learn Publ. 2021;34(3):315-30.
  12. Björk B-C. Acceptance rates of scholarly peer-reviewed journals: A literature survey. EPI. 2019:28(4). Link: https://revista.profesionaldelainformacion.com/index.php/EPI/article/view/epi.2019.jul.07 (Last visit: September 17, 2025).
  13. Björk B-C. Publishing speed and acceptance rates of open access megajournals. Online Inf Rev. 2021;45(2):270-7.
  14. Tutuncu L. Editorial board publication strategy and acceptance rates in Turkish national journals. J Data Inf Sci. 2023;10.
  15. Pajić D. On the stability of citation-based journal rankings. J Informetr. 2015;9(4):990-1006.
  16. Cai N, Liu L, Cao J-W. On collective dynamics of academic journals: polarization, fluctuation, and robustness. IEEE Trans Comput Soc Syst. 2025.
  17. Picciotto M. Why editorial rejection? J Neurosci. 2018;38(1):1-2.
  18. Springer journal finder. Link: https://journalsuggester.springer.com/ (Last visit: September 17, 2025).
  19. Wiley journal Finder Link: https://journalfinder.wiley.com (Last visit: September 17, 2025).
  20. Elsevier journal finder. Link: https://journalfinder.elsevier.com (Last visit: September 17, 2025).
  21. Jane (Journal/author name estimator). Link: https://jane.biosemantics.org/ (Last visit: September 17, 2025).
  22. Journal targeter. Link: https://jot.publichealth.yale.edu/ (Last visit: September 17, 2025).
  23. Edanz journal selector. Link: https://www.edanz.com/journal-selector (Last visit: September 17, 2025).
  24. Manuscript matcher. Link: https://mjl.clarivate.com/manuscript-matcher (Last visit: September 17, 2025).
  25. Trinka journal finder. Link: https://www.trinka.ai/features/journal-finder (Last visit: September 17, 2025).
  26. ChatGPT. Link: https://chatgpt.com/ (Last visit: September 17, 2025).
  27. Grok. Link: https://grok.com/ (Last visit: September 17, 2025).
  28. Hartard M, Hartard C, Scharla SH, Scharla SA, Hartard D, Herrera D, et al. Influence of heat therapy and/or vibration on nonspecific back pain: A prospective, open, randomized, controlled, parallel-group clinical study. Tunis Med. 2025;103.
  29. Methnani J. Appendix 1. Output of the Springer Journal Finder: Publisher-Based Journal Recommendation Using Abstract Matching. Zenodo. 2025. https://doi.org/10.5281/zenodo.15865749
  30. Methnani J. Appendix 2. Output of Jane (Journal/Author Name Estimator): Text-Matching Journal Recommendation Based on Abstract Similarity. Zenodo. 2025. https://doi.org/10.5281/zenodo.15866088
  31. Methnani J. Appendix 3. Output of Manuscript Matcher: AI-Based Journal Recommendation Using Citation Clustering and Web of Science Integration Ask ChatGPT. Zenodo. 2025. https://doi.org/10.5281/zenodo.15866125
  32. Methnani J. Appendix 4. Output of Trinka Journal Finder: AI-Driven Journal Recommendation Based on Concept-Matching Algorithms. Zenodo. 2025. https://doi.org/10.5281/zenodo.15866149
  33. Methnani J. Appendix 5. Output of ChatGPT (Ephemeral Mode): Generative AI-Based Journal Recommendations from Full-Text Analysis. Zenodo. 2025. https://doi.org/10.5281/zenodo.15866167
  34. Methnani J. Appendix 6. Output of Grok: Generative AI-Based Journal Recommendations Using Full-Text Input. Zenodo. 2025. https://doi.org/10.5281/zenodo.15866174
  35. Forrester A, Björk BC, Tenopir C. New web services that help authors choose journals. Learn Publ. 2017;30(4):281-7.
  36. Mulay P, Joshi R, Chaudhari A, editors. Journo metrics: Analysis of various “Journal-Finder” services. AIP Conference Proceedings; 2023: AIP Publishing.
  37. Sage journal recommender. Link: https://journal-recommender.sagepub.com/ (Last visit: September 17, 2025).
  38. MDPI journal finder. Link: https://www.mdpi.com/about/journalfinder (Last visit: September 17, 2025).
  39. Taylor & Francis. Link: https://authorservices.taylorandfrancis.com/publishing-your-research/choosing-a-journal/journal-suggester (Last visit: September 17, 2025).
  40. Curry CL. Journal/author name estimator (JANE). J Med Libr Assoc. 2019;107(1):122.
  41. Farber S. Enhancing academic decision-making: A pilot study of AI-supported journal selection in higher education. Innov High Educ. 2025:1-19.
  42. Ben Saad H, Dergaa I, Ghouili H, Ceylan Hİ, Chamari K, Dhahbi W. The assisted Technology dilemma: a reflection on AI chatbots use and risks while reshaping the peer review process in scientific research. AI Soc. 2025:1-8.
  43. Chelli M, Descamps J, Lavoué V, Trojani C, Azar M, Deckert M, et al. Hallucination rates and reference accuracy of ChatGPT and Bard for systematic reviews: Comparative Analysis. J Med Internet Res. 2024;26:e53164.
  44. Teixeira da Silva JA, Scelles N. An artificial intelligence tool misclassifies sport science journals as predatory. J Sci Med Sport. 2024;27(4):266-9.
  45. Chou K-C. The problem of Elsevier series journals online submission by using artificial intelligence. NatSci. 2020;12(02):37-8.
  46. Farber S. Enhancing peer review efficiency: A mixed‐methods analysis of artificial intelligence‐assisted reviewer selection across academic disciplines. Learn Publ. 2024;37(4).
  47. Macri C, Bacchi S, Teoh SC, Lim WY, Lam L, Patel S, et al. Evaluating the ability of open-source artificial intelligence to predict accepting-journal impact factor and eigenfactor score using academic article abstracts: Cross-sectional machine learning analysis. J Med Internet Res. 2023;25:e42789.
  48. Sallam M, Al-Mahzoum K, Marzoaq O, Alfadhel M, Al-Ajmi A, Al-Ajmi M, et al. Evident gap between generative artificial intelligence as an academic editor compared to human editors in scientific publishing. Edelweiss Appl Sci Technol. 2024;8(6):960-79.
  49. Jain R, Jain A. Generative AI in writing research papers: A new type of algorithmic bias and uncertainty in scholarly work. Intelligent systems and applications. Lecture Notes in Networks and Systems. 2024. p. 656-69.
  50. Kousha K, Thelwall M. Artificial intelligence to support publishing and peer review: A summary and review. Learn Publ. 2023;37(1):4-12.
  51. Checco A, Bracciale L, Loreti P, Pinfield S, Bianchi G. AI-assisted peer review. Humanit Soc Sci Commun. 2021;8(1):25.
  52. Kamaruddin FE, Mohamad Razali NH, Ajis AFM, Ab Rahim NR, Abd Halim SN, Rahmat AM. Factors Influencing data partiality in artificial intelligence. IMBR. 2024;16(3S(I)a):1161-9.
  53. Dergaa I, Fekih-Romdhane F, Hallit S, Loch AA, Glenn JM, Fessi MS, et al. ChatGPT is not ready yet for use in providing mental health assessment and interventions. Front Psychiatry. 2023;14:1277756.
  54. Dergaa I, Ben Saad H, Ghouili H, M Glenn J, El Omri A, Slim I, et al. Evaluating the Applicability and Appropriateness of ChatGPT as a Source for Tailored Nutrition Advice: A Multi-Scenario Study. New Asian J Med. 2024a;2(1):1-16.
  55. Dergaa I, Saad HB, El Omri A, Glenn JM, Clark CCT, Washif JA, et al. Using artificial intelligence for exercise prescription in personalised health promotion: A critical evaluation of OpenAI's GPT-4 model. Biol Sport. 2024;41(2):221-41.
  56. Washif JA, Pagaduan J, James C, Dergaa I, Beaven CM. Artificial intelligence in sport: Exploring the potential of using ChatGPT in resistance training prescription. Biol Sport. 2024;41(2):209-20.
  57. Kumar A, Aelgani V, Vohra R, Gupta SK, Bhagawati M, Paul S, et al. Artificial intelligence bias in medical system designs: a systematic review. Multimed Tools Appl. 2023;83(6):18005-57.
  58. Dergaa I, Zakhama L, Dziri C, Ben Saad H. Enhancing scholarly discourse in the age of artificial intelligence: A guided approach to effective peer review process. Tunis Med. 2023;101(10):721-6.
  59. Hidouri S, Kamoun H, Salah S, Jellad A, Ben Saad H. Key guidelines for responding to reviewers. F1000Res. 2024 Sep 20;13:921.