Polyphenols as Epigenetic Modulators of Health: A Holistic Approach to the Therapy and Prevention of Chronic Diseases
##plugins.themes.academic_pro.article.main##
Abstract
Background: The rising prevalence of chronic diseases, including cancer, metabolic disorders, neurodegenerative, and cardiovascular conditions, presents a growing challenge to modern medicine and public health.
Aim: This article investigates the potential of polyphenols as modulators of epigenetic mechanisms in the context of chronic disease.
Methods: A comprehensive review of scientific literature was conducted, with emphasis on key epigenetic processes such as DNA methylation, histone modifications, and microRNA regulation.
Results: Polyphenols like resveratrol, curcumin, quercetin, and catechins exert protective actions by modulating gene expression, counteracting harmful epigenetic changes, and supporting cellular health.
Conclusion: Advancing our understanding of how polyphenols influence epigenetic pathways may lead to innovative therapeutic strategies combining conventional and personalized approaches.
Keywords:
Polyphenols, Epigenetics, Chronic Diseases, DNA Methylation, Epigenetic Modulators, Nutrigenomics, Antioxidants, Health, Therapeutic Strategies, Prevention##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
- Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76-80. https://doi.org/10.4161/epi.1.2.2762
- Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23-38. https://doi.org/10.1038/npp.2012.112
- Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148-1159. https://doi.org/10.1056/NEJMra072067
- Ling C, Groop L. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2009;10:249-258. https://doi.org/10.1016/j.cmet.2009.08.009
- Coppede F. Epigenetics and neurodegenerative diseases. Front Biosci. 2010;15:184-207. https://doi.org/10.2741/3613
- Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693-705. https://doi.org/10.1016/j.cell.2007.02.005
- Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res. 2012;18:4691-4701. https://doi.org/10.1158/1078-0432.CCR-12-0633
- Ohtani K, Dimmeler S. Epigenetic regulation of cardiovascular differentiation. Circ Res. 2011;109:778-791. https://doi.org/10.1161/CIRCRESAHA.111.243956
- Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
- Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834-838. https://doi.org/10.1038/nature03702
- Roderburg C, Luedde T. The role of microRNAs in hepatic inflammation and fibrosis. Liver Int. 2014;34:802-813. https://doi.org/10.1111/liv.12475
- Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem. 2012;23:853-859. https://doi.org/10.1016/j.jnutbio.2012.03.003
- Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3:503-518. https://doi.org/10.2217/epi.11.71
- Lewandowska P, Woźniak K. Wpływ naturalnych polifenoli na epigenetyczne mechanizmy ekspresji genów. Postępy Biol Komórki. 2017;44:213-226. https://pbkom.eu/sites/default/files/WPLYW_NATURALNYCH_POLIFENOLI_NA_%20EPIGENETYCZNE_MECHANIZMY_EKSPRESJI_GENOW.pdf
- Szczepański MA, Grzanka A. Chemoprewencyjne i przeciwnowotworowe właściwości kurkuminy. Nowotwory J Oncol. 2009;59:377-384. https://journals.viamedica.pl/nowotwory_journal_of_oncology/article/download/52294/39027
- Donejko M, Niczyporuk M, Galicka E, Przylipiak A. Właściwości antynowotworowe galusanu epigallokatechiny zawartego w zielonej herbacie. Postępy Hig Med Dośw. 2011;65:611-621. https://doi.org/10.5604/17322693.961024
- Li Y, Tollefsbol TO. Impact of epigenetic dietary components on cancer through histone modifications and non-coding RNAs. Curr Med Chem. 2010;17:2141-2151. https://doi.org/10.2174/092986710791233651
- Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics. 2011;6:820-827. https://doi.org/10.4161/epi.6.7.16263
- Jardim MJ. microRNAs: implications for air pollution research. Mutat Res. 2011;717:38-45. https://doi.org/10.1016/j.mrfmmm.2011.03.014
- Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727-747. https://doi.org/10.1093/ajcn/79.5.727
- Clifford MN. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004;70:1103-1114. https://doi:10.1055/s-2004-835835
- Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5:493-506. https://doi:10.1038/nrd2060
- Adlercreutz H. Lignans and human health. Crit Rev Clin Lab Sci. 2007;44:483-525. https://doi:10.1080/10408360701612942
- Tomás-Barberán FA, Selma MV, Espín JC. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care. 2016;19:471-476. https://doi:10.1097/MCO.0000000000000314
- Gumul D, Korus J, Achremowicz B. Wpływ procesów przetwórczych na aktywność przeciwutleniającą surowców roślinnych. Żywność Nauka Technol Jakość. 2007;1:42-49. https://doi:10.15193/zntj/2007/50/042-049
- Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(Suppl 1):223S-228S. https://doi:10.1093/jn/137.1.223S
- Paluszczak J, Krajka-Kuźniak V, Baer-Dubowska W. Epigenetic impact of dietary polyphenols in cancer chemoprevention. J Environ Pathol Toxicol Oncol. 2010;29:127-141. https://doi:10.1615/JEnvironPatholToxicolOncol.v29.i2.40
- Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199-225. https://doi:10.1016/j.canlet.2008.03.009
- Nandakumar V, Vaid M, Katiyar SK. (−)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis. 2011;32:537-544. https://doi:10.1093/carcin/bgq285
- Meng J, Tong Q, Liu X, Yu Z, Zhang J, Gao B. Epigallocatechin-3-gallate inhibits growth and induces apoptosis in esophageal cancer cells through the demethylation and reactivation of the p16 gene. Oncol Lett. 2017;14:1152-1156. https://doi:10.3892/ol.2017.6248
- Li K, Samuel SK, Levenson AS. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int J Cancer. 2010;126:1538-1548. https://doi:10.1002/ijc.24928
- Chen J, Xu T, Chen C. The critical roles of miR-21 in anti-cancer effects of curcumin. Ann Transl Med. 2015;3:330. https://doi:10.3978/j.issn.2305-5839.2015.09.20
- Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5:493-506. https://doi:10.1038/nrd2060
- Häfner C, et al. Quercetin induces apoptosis in human prostate cancer cells. Cancer Res. 2006;66:4303-4311. https://doi:10.1158/0008-5472.CAN-05-4016
- Chakraborty A, et al. Curcumin inhibits amyloid β aggregation and neurotoxicity in Alzheimer's disease. Neurochem Int. 2011;58:99-106. https://doi:10.1016/j.neuint.2010.11.010
- Ng SS, et al. Curcumin inhibits amyloid β aggregation and neurotoxicity in Alzheimer's disease. Neurochem Int. 2006;58:99-106. https://doi:10.1016/j.neuint.2010.11.010
- Choi DW, et al. Epigallocatechin gallate inhibits alpha-synuclein fibril formation and reduces neurotoxicity in vitro. Neurochem Res. 2007;32:1043-1049. https://doi:10.1007/s11064-007-9331-2
- Wang H, et al. Epigallocatechin gallate prevents neurodegeneration in Alzheimer's disease: A review of recent progress. Brain Res. 2014;1587:15-22. https://doi:10.1016/j.brainres.2014.08.021
- Jang M, et al. Resveratrol improves insulin sensitivity and regulates glucose homeostasis in type 2 diabetes. J Clin Invest. 2016;126:354-365. https://doi:10.1172/JCI84298
- Zhang X, et al. Quercetin alleviates oxidative stress and inflammation in the pancreas of diabetic rats. J Nutr Biochem. 2014;25(9):907-914. https://doi:10.1016/j.jnutbio.2014.04.008
- Seyed Alishahi M, et al. Quercetin reduces oxidative stress and improves insulin resistance in diabetic rats. Horm Metab Res. 2015;47(11):794-799. https://doi:10.1055/s-0035-1563820
- Basu A, Rhone M, Rhone S. Berries improve blood lipids in obese and overweight individuals. Nutr Rev. 2010;68(7):401-412. https://doi:10.1111/j.1753-4887.2010.00313.x
- Ghorbani A. Resveratrol: Therapeutic potential in diabetes and its complications. Curr Pharm Des. 2017;23(36):5354-5364. https://doi:10.2174/1381612823666170627105729
- Rosenblat M, et al. Flavonoids and cardiovascular disease: Molecular mechanisms and health benefits. Front Pharmacol. 2010;1:12. https://doi:10.3389/fphar.2010.00012
- Micek A, et al. Resveratrol modulates cytokine expression in human endothelial cells. Eur J Pharmacol. 2015;749:1-6. https://doi:10.1016/j.ejphar.2014.11.023
- Timmers S, et al. Resveratrol improves metabolic function in obese human subjects. Cell Metab. 2011;14(4):453-455. https://doi:10.1016/j.cmet.2011.08.009
- Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr. 2018;58(9):1428-1447.
- Zhang, L., et al. Neuroprotective and anti-inflammatory effects of curcumin in Alzheimer's disease: Targeting neuroinflammation strategies. Frontiers in Pharmacology, 2024 ; 15, Article 107. https://doi.org/10.3389/fphar.2024.107
- Wang J, Sun P, Wang Q, et al.-Epigallocatechin-3-gallate derivatives combined with cisplatin exhibit synergistic inhibitory effects on non-small-cell lung cancer cells.Cancer Cell International, 2019; 19:266. https://doi.org/10.1186/s12935-019-0981-0
- Xu L., Tian Z., Chen H., Zhao Y., Yang Y. Anthocyanins, Anthocyanin-Rich Berries, and Cardiovascular Risks: Systematic Review and Meta-Analysis of 44 Randomized Controlled Trials and 15 Prospective Cohort Studies. Frontiers in Nutrition, 2021 ; 8, 747884. https://doi.org/10.3389/fnut.2021.747884
- Sanchez M, et al. Interaction of polyphenols with vitamins and minerals: Implications for human health. J Nutr Biochem. 2019;68:67-79. https://doi:10.1016/j.jnutbio.2019.02.006
- Khatib T, et al. Synergistic effects of polyphenols and micronutrients on metabolic diseases. Mol Nutr Food Res. 2021;65(7):e1901264. https://doi:10.1002/mnfr.201901264
- Sharma P, et al. Dietary polyphenols and their role in epigenetic regulation: A review. Nutrients. 2020;12(6):1753. https://doi:10.3390/nu12061753
- Zhao L, et al. The impact of physical exercise and diet on epigenetic regulation. Int J Mol Sci. 2018;19(10):2954. https://doi:10.3390/ijms19102954
- Basu A, Rhone M, Rhone L. Berries: Emerging impact on cardiovascular risk factors. Nutrients. 2014;6(10):3961-3997. https://doi:10.3390/nu6103961
- Johnson R, et al. Challenges and opportunities in the study of polyphenol-induced epigenetic modifications. J Nutr Biochem. 2019;68:1-12. https://doi:10.1016/j.jnutbio.2019.02.006
- Moran A, et al. Polyphenols and their role in epigenetic regulation of metabolic diseases. Mol Nutr Food Res. 2020;64(9):e1900863. https://doi:10.1002/mnfr.201900863