Polyphenols as Epigenetic Modulators of Health: A Holistic Approach to the Therapy and Prevention of Chronic Diseases

##plugins.themes.academic_pro.article.main##

Sara Gheribi

Abstract

Background: The rising prevalence of chronic diseases, including cancer, metabolic disorders, neurodegenerative, and cardiovascular conditions, presents a growing challenge to modern medicine and public health.


Aim: This article investigates the potential of polyphenols as modulators of epigenetic mechanisms in the context of chronic disease.


Methods: A comprehensive review of scientific literature was conducted, with emphasis on key epigenetic processes such as DNA methylation, histone modifications, and microRNA regulation.


Results: Polyphenols like resveratrol, curcumin, quercetin, and catechins exert protective actions by modulating gene expression, counteracting harmful epigenetic changes, and supporting cellular health.


Conclusion: Advancing our understanding of how polyphenols influence epigenetic pathways may lead to innovative therapeutic strategies combining conventional and personalized approaches.

Keywords:

Polyphenols, Epigenetics, Chronic Diseases, DNA Methylation, Epigenetic Modulators, Nutrigenomics, Antioxidants, Health, Therapeutic Strategies, Prevention

##plugins.themes.academic_pro.article.details##

Author Biography

Sara Gheribi, Polish University – Foundation

Co-founder; https://orcid.org/0000-0001-7626-7578

References

  1. Holliday R. Epigenetics: a historical overview. Epigenetics. 2006;1:76-80. https://doi.org/10.4161/epi.1.2.2762
  2. Moore LD, Le T, Fan G. DNA methylation and its basic function. Neuropsychopharmacology. 2013;38:23-38. https://doi.org/10.1038/npp.2012.112
  3. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358:1148-1159. https://doi.org/10.1056/NEJMra072067
  4. Ling C, Groop L. Epigenetics in human obesity and type 2 diabetes. Cell Metab. 2009;10:249-258. https://doi.org/10.1016/j.cmet.2009.08.009
  5. Coppede F. Epigenetics and neurodegenerative diseases. Front Biosci. 2010;15:184-207. https://doi.org/10.2741/3613
  6. Kouzarides T. Chromatin modifications and their function. Cell. 2007;128:693-705. https://doi.org/10.1016/j.cell.2007.02.005
  7. Lin KT, Wang YW, Chen CT, Ho CM, Su WH, Jou YS. HDAC inhibitors augmented cell migration and metastasis through induction of PKCs leading to identification of low toxicity modalities for combination cancer therapy. Clin Cancer Res. 2012;18:4691-4701. https://doi.org/10.1158/1078-0432.CCR-12-0633
  8. Ohtani K, Dimmeler S. Epigenetic regulation of cardiovascular differentiation. Circ Res. 2011;109:778-791. https://doi.org/10.1161/CIRCRESAHA.111.243956
  9. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell. 2004;116:281-297. https://doi.org/10.1016/S0092-8674(04)00045-5
  10. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435:834-838. https://doi.org/10.1038/nature03702
  11. Roderburg C, Luedde T. The role of microRNAs in hepatic inflammation and fibrosis. Liver Int. 2014;34:802-813. https://doi.org/10.1111/liv.12475
  12. Anderson OS, Sant KE, Dolinoy DC. Nutrition and epigenetics: an interplay of dietary methyl donors, one-carbon metabolism and DNA methylation. J Nutr Biochem. 2012;23:853-859. https://doi.org/10.1016/j.jnutbio.2012.03.003
  13. Hardy TM, Tollefsbol TO. Epigenetic diet: impact on the epigenome and cancer. Epigenomics. 2011;3:503-518. https://doi.org/10.2217/epi.11.71
  14. Lewandowska P, Woźniak K. Wpływ naturalnych polifenoli na epigenetyczne mechanizmy ekspresji genów. Postępy Biol Komórki. 2017;44:213-226. https://pbkom.eu/sites/default/files/WPLYW_NATURALNYCH_POLIFENOLI_NA_%20EPIGENETYCZNE_MECHANIZMY_EKSPRESJI_GENOW.pdf
  15. Szczepański MA, Grzanka A. Chemoprewencyjne i przeciwnowotworowe właściwości kurkuminy. Nowotwory J Oncol. 2009;59:377-384. https://journals.viamedica.pl/nowotwory_journal_of_oncology/article/download/52294/39027
  16. Donejko M, Niczyporuk M, Galicka E, Przylipiak A. Właściwości antynowotworowe galusanu epigallokatechiny zawartego w zielonej herbacie. Postępy Hig Med Dośw. 2011;65:611-621. https://doi.org/10.5604/17322693.961024
  17. Li Y, Tollefsbol TO. Impact of epigenetic dietary components on cancer through histone modifications and non-coding RNAs. Curr Med Chem. 2010;17:2141-2151. https://doi.org/10.2174/092986710791233651
  18. Martinez-Zamudio R, Ha HC. Environmental epigenetics in metal exposure. Epigenetics. 2011;6:820-827. https://doi.org/10.4161/epi.6.7.16263
  19. Jardim MJ. microRNAs: implications for air pollution research. Mutat Res. 2011;717:38-45. https://doi.org/10.1016/j.mrfmmm.2011.03.014
  20. Manach C, Scalbert A, Morand C, Rémésy C, Jiménez L. Polyphenols: food sources and bioavailability. Am J Clin Nutr. 2004;79:727-747. https://doi.org/10.1093/ajcn/79.5.727
  21. Clifford MN. Diet-derived phenols in plasma and tissues and their implications for health. Planta Med. 2004;70:1103-1114. https://doi:10.1055/s-2004-835835
  22. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5:493-506. https://doi:10.1038/nrd2060
  23. Adlercreutz H. Lignans and human health. Crit Rev Clin Lab Sci. 2007;44:483-525. https://doi:10.1080/10408360701612942
  24. Tomás-Barberán FA, Selma MV, Espín JC. Interactions of gut microbiota with dietary polyphenols and consequences to human health. Curr Opin Clin Nutr Metab Care. 2016;19:471-476. https://doi:10.1097/MCO.0000000000000314
  25. Gumul D, Korus J, Achremowicz B. Wpływ procesów przetwórczych na aktywność przeciwutleniającą surowców roślinnych. Żywność Nauka Technol Jakość. 2007;1:42-49. https://doi:10.15193/zntj/2007/50/042-049
  26. Fang M, Chen D, Yang CS. Dietary polyphenols may affect DNA methylation. J Nutr. 2007;137(Suppl 1):223S-228S. https://doi:10.1093/jn/137.1.223S
  27. Paluszczak J, Krajka-Kuźniak V, Baer-Dubowska W. Epigenetic impact of dietary polyphenols in cancer chemoprevention. J Environ Pathol Toxicol Oncol. 2010;29:127-141. https://doi:10.1615/JEnvironPatholToxicolOncol.v29.i2.40
  28. Kunnumakkara AB, Anand P, Aggarwal BB. Curcumin inhibits proliferation, invasion, angiogenesis and metastasis of different cancers through interaction with multiple cell signaling proteins. Cancer Lett. 2008;269:199-225. https://doi:10.1016/j.canlet.2008.03.009
  29. Nandakumar V, Vaid M, Katiyar SK. (−)-Epigallocatechin-3-gallate reactivates silenced tumor suppressor genes, Cip1/p21 and p16INK4a, by reducing DNA methylation and increasing histones acetylation in human skin cancer cells. Carcinogenesis. 2011;32:537-544. https://doi:10.1093/carcin/bgq285
  30. Meng J, Tong Q, Liu X, Yu Z, Zhang J, Gao B. Epigallocatechin-3-gallate inhibits growth and induces apoptosis in esophageal cancer cells through the demethylation and reactivation of the p16 gene. Oncol Lett. 2017;14:1152-1156. https://doi:10.3892/ol.2017.6248
  31. Li K, Samuel SK, Levenson AS. Resveratrol enhances p53 acetylation and apoptosis in prostate cancer by inhibiting MTA1/NuRD complex. Int J Cancer. 2010;126:1538-1548. https://doi:10.1002/ijc.24928
  32. Chen J, Xu T, Chen C. The critical roles of miR-21 in anti-cancer effects of curcumin. Ann Transl Med. 2015;3:330. https://doi:10.3978/j.issn.2305-5839.2015.09.20
  33. Baur JA, Sinclair DA. Therapeutic potential of resveratrol: the in vivo evidence. Nat Rev Drug Discov. 2006;5:493-506. https://doi:10.1038/nrd2060
  34. Häfner C, et al. Quercetin induces apoptosis in human prostate cancer cells. Cancer Res. 2006;66:4303-4311. https://doi:10.1158/0008-5472.CAN-05-4016
  35. Chakraborty A, et al. Curcumin inhibits amyloid β aggregation and neurotoxicity in Alzheimer's disease. Neurochem Int. 2011;58:99-106. https://doi:10.1016/j.neuint.2010.11.010
  36. Ng SS, et al. Curcumin inhibits amyloid β aggregation and neurotoxicity in Alzheimer's disease. Neurochem Int. 2006;58:99-106. https://doi:10.1016/j.neuint.2010.11.010
  37. Choi DW, et al. Epigallocatechin gallate inhibits alpha-synuclein fibril formation and reduces neurotoxicity in vitro. Neurochem Res. 2007;32:1043-1049. https://doi:10.1007/s11064-007-9331-2
  38. Wang H, et al. Epigallocatechin gallate prevents neurodegeneration in Alzheimer's disease: A review of recent progress. Brain Res. 2014;1587:15-22. https://doi:10.1016/j.brainres.2014.08.021
  39. Jang M, et al. Resveratrol improves insulin sensitivity and regulates glucose homeostasis in type 2 diabetes. J Clin Invest. 2016;126:354-365. https://doi:10.1172/JCI84298
  40. Zhang X, et al. Quercetin alleviates oxidative stress and inflammation in the pancreas of diabetic rats. J Nutr Biochem. 2014;25(9):907-914. https://doi:10.1016/j.jnutbio.2014.04.008
  41. Seyed Alishahi M, et al. Quercetin reduces oxidative stress and improves insulin resistance in diabetic rats. Horm Metab Res. 2015;47(11):794-799. https://doi:10.1055/s-0035-1563820
  42. Basu A, Rhone M, Rhone S. Berries improve blood lipids in obese and overweight individuals. Nutr Rev. 2010;68(7):401-412. https://doi:10.1111/j.1753-4887.2010.00313.x
  43. Ghorbani A. Resveratrol: Therapeutic potential in diabetes and its complications. Curr Pharm Des. 2017;23(36):5354-5364. https://doi:10.2174/1381612823666170627105729
  44. Rosenblat M, et al. Flavonoids and cardiovascular disease: Molecular mechanisms and health benefits. Front Pharmacol. 2010;1:12. https://doi:10.3389/fphar.2010.00012
  45. Micek A, et al. Resveratrol modulates cytokine expression in human endothelial cells. Eur J Pharmacol. 2015;749:1-6. https://doi:10.1016/j.ejphar.2014.11.023
  46. Timmers S, et al. Resveratrol improves metabolic function in obese human subjects. Cell Metab. 2011;14(4):453-455. https://doi:10.1016/j.cmet.2011.08.009
  47. Rauf A, Imran M, Butt MS, Nadeem M, Peters DG, Mubarak MS. Resveratrol as an anti-cancer agent: A review. Crit Rev Food Sci Nutr. 2018;58(9):1428-1447.
  48. Zhang, L., et al. Neuroprotective and anti-inflammatory effects of curcumin in Alzheimer's disease: Targeting neuroinflammation strategies. Frontiers in Pharmacology, 2024 ; 15, Article 107. https://doi.org/10.3389/fphar.2024.107
  49. Wang J, Sun P, Wang Q, et al.-Epigallocatechin-3-gallate derivatives combined with cisplatin exhibit synergistic inhibitory effects on non-small-cell lung cancer cells.Cancer Cell International, 2019; 19:266. https://doi.org/10.1186/s12935-019-0981-0
  50. Xu L., Tian Z., Chen H., Zhao Y., Yang Y. Anthocyanins, Anthocyanin-Rich Berries, and Cardiovascular Risks: Systematic Review and Meta-Analysis of 44 Randomized Controlled Trials and 15 Prospective Cohort Studies. Frontiers in Nutrition, 2021 ; 8, 747884. https://doi.org/10.3389/fnut.2021.747884
  51. Sanchez M, et al. Interaction of polyphenols with vitamins and minerals: Implications for human health. J Nutr Biochem. 2019;68:67-79. https://doi:10.1016/j.jnutbio.2019.02.006
  52. Khatib T, et al. Synergistic effects of polyphenols and micronutrients on metabolic diseases. Mol Nutr Food Res. 2021;65(7):e1901264. https://doi:10.1002/mnfr.201901264
  53. Sharma P, et al. Dietary polyphenols and their role in epigenetic regulation: A review. Nutrients. 2020;12(6):1753. https://doi:10.3390/nu12061753
  54. Zhao L, et al. The impact of physical exercise and diet on epigenetic regulation. Int J Mol Sci. 2018;19(10):2954. https://doi:10.3390/ijms19102954
  55. Basu A, Rhone M, Rhone L. Berries: Emerging impact on cardiovascular risk factors. Nutrients. 2014;6(10):3961-3997. https://doi:10.3390/nu6103961
  56. Johnson R, et al. Challenges and opportunities in the study of polyphenol-induced epigenetic modifications. J Nutr Biochem. 2019;68:1-12. https://doi:10.1016/j.jnutbio.2019.02.006
  57. Moran A, et al. Polyphenols and their role in epigenetic regulation of metabolic diseases. Mol Nutr Food Res. 2020;64(9):e1900863. https://doi:10.1002/mnfr.201900863