Screening for Familial Hypercholesterolemia in Tunisia using Whole Exome Sequencing: Importance in diagnosis and healthcare management
##plugins.themes.academic_pro.article.main##
Abstract
Aim: To determine pathogenic variants linked to Familial Hypercholesterolemia (FH) among a southern Tunisian family using Whole Exome Sequencing (WES).
Methods: Genomic DNA was extracted from whole blood among the index case as well as other affected and unaffected family members. Then, WES was performed only in the proband. The pathogenicity of genetic variation was assessed in a set of 13 genes reported as associated with FH using combined filtering and bioinformatics prediction tools. Finally, sanger sequencing was done to verify the probands' likely pathogenic predicted mutations and to check for familial segregation among all family subjects.
Results: Our results showed the presence of a pathogenic splice site mutation (c.1186+1G>A) in the LDLR gene among the proband and other affected family members. The following up of the family, revealed the effectiveness of the combination of rosuvastatin and ezetimibe with healthy diet to meet the LDL-c treatment goal with approximately 50% of decrease for the proband.
Conclusion: This study is the first of its kind using WES for FH screening and diagnosis in Tunisia. Here, we point up the importance of molecular analysis for a better health care management of FH patients and their families.
Keywords:
Hypercholesterolemia, LDLR, North Africa, Whole exome sequencing, bioinformatic analysis, Splice site variant##plugins.themes.academic_pro.article.details##

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
References
- Shaik NA, Al-Shehri N, Athar M, Awan A, Khalili M, Al Mahadi HB, et al. Protein structural insights into a rare PCSK9 gain-of-function variant (R496W) causing familial hypercholesterolemia in a Saudi family: whole exome sequencing and computational analysis. Front Physiol. 2023;14(July):1–12.
- Han SM, Hwang B, Park TG, Kim D Il, Rhee MY, Lee BK, et al. Genetic testing of Korean Familial hypercholesterolemia using whole-exome sequencing. PLoS One. 2015;10(5):1–12.
- Jelassi A, Najah M, Jguirim I, Maatouk F, Lestavel S, Laroussi OS, et al. A novel splice site mutation of the LDL receptor gene in a Tunisian hypercholesterolemic family. 2008 [cited 2022 Jan 28]; Available from: www.fruitfly.org.
- Jelassi A, Slimani A, Jguirim I, Najah M, Abid AM, Boughamoura L, et al. Moderate phenotypic expression of familial hypercholesterolemia in Tunisia. Clin Chim Acta [Internet]. 2010;411(9–10):735–8. Available from: http://dx.doi.org/10.1016/j.cca.2010.02.008
- Etxebarria A, Palacios L, Stef M, Tejedor D, Uribe KB, Oleaga A, et al. Functional characterization of splicing and ligand-binding domain variants in the LDL receptor. Hum Mutat. 2012;33(1):232–43.
- Toft-Nielsen F, Emanuelsson F, Benn M. Familial Hypercholesterolemia Prevalence Among Ethnicities—Systematic Review and Meta-Analysis. Front Genet. 2022;13(February):1–10.
- Sawhney JPS, Madan K. Familial hypercholesterolemia. Indian Heart J [Internet]. 2024;76(S1):S108–12. Available from: https://doi.org/10.1016/j.ihj.2023.12.002
- Moldovan V, Banescu C, Dobreanu M. Molecular diagnosis methods in familial hypercholesterolemia. Anatol J Cardiol. 2020;23(3):120–7.
- Kaya E, Kayıkçıoğlu M, Vardarlı AT, Eroğlu Z, Payzın S, Can L. PCSK 9 gain-of-function mutations (R496W and D374Y) and clinical cardiovascular characteristics in a cohort of Turkish patients with familial hypercholesterolemia. Anatol J Cardiol. 2017;18(4):266–72.
- Brænne I, Kleinecke M, Reiz B, Graf E, Strom T, Wieland T, et al. Systematic analysis of variants related to familial hypercholesterolemia in families with premature myocardial infarction. Eur J Hum Genet. 2016;24(2):191–7.
- Defesche JC, Gidding SS, Harada-Shiba M, Hegele RA, Santos RD, Wierzbicki AS. Familial hypercholesterolaemia. Nat Rev Dis Prim [Internet]. 2017;3(1):1–20. Available from: http://dx.doi.org/10.1038/nrdp.2017.93
- Ference BA, Ginsberg HN, Graham I, Ray KK, Packard CJ, Bruckert E, et al. Low-density lipoproteins cause atherosclerotic cardiovascular disease. 1. Evidence from genetic, epidemiologic, and clinical studies. A consensus statement fromthe European Atherosclerosis Society Consensus Panel. Eur Heart J. 2017;38(32):2459–72.
- Rocha VZ, Santos RD. Past, Present, and Future of Familial Hypercholesterolemia Management. Methodist Debakey Cardiovasc J. 2021;17(4):28–35.
- Tokgozoglu L, Kayikcioglu M. Familial Hypercholesterolemia: Global Burden and Approaches. Curr Cardiol Rep. 2021;23(10).
- Nordestgaard BG, Chapman MJ, Humphries SE, Ginsberg HN, Masana L, Descamps OS, et al. Familial hypercholesterolaemia is underdiagnosed and undertreated in the general population: Guidance for clinicians to prevent coronary heart disease. Eur Heart J. 2013;34(45):3478–90.
- Hegele RA, Borén J, Ginsberg HN, Arca M, Averna M, Binder CJ, et al. Review Rare dyslipidaemias , from phenotype to genotype to management : a European Atherosclerosis Society task force consensus statement. LANCET Diabetes Endocrinol [Internet]. 2019;8587(19). Available from: http://dx.doi.org/10.1016/S2213-8587(19)30264-5
- Berberich AJ, Hegele RA. The complex molecular genetics of familial hypercholesterolaemia. Nat Rev Cardiol [Internet]. 2019;16(1):9–20. Available from: http://dx.doi.org/10.1038/s41569-018-0052-6
- Vallejo-Vaz AJ, Kondapally Seshasai SR, Cole D, Hovingh GK, Kastelein JJP, Mata P, et al. Familial hypercholesterolaemia: A global call to arms. Atherosclerosis. 2015;243(1):257–9.
- Vrablik M, Tichý L, Freiberger T, Blaha V, Satny M, Hubacek JA. Genetics of Familial Hypercholesterolemia : New Insights Definition of Familial. 2020;11(October):1–10.
- Ben Halim N, Ben Alaya Bouafif N, Romdhane L, Kefi Ben Atig R, Chouchane I, Bouyacoub Y, et al. Consanguinity, endogamy, and genetic disorders in Tunisia. J Community Genet. 2013;4(2):273–84.
- Slimane MN, Pousse H, Maatoug F, Hammami M, Ben Farhat MH. Phenotypic expression of familial hypercholesterolaemia in Central and Southern Tunisia. Atherosclerosis. 1993;104(1–2):153–8.
- Jelassi A, Slimani A, Rabès JP, Jguirim I, Abifadel M, Boileau C, et al. Genomic characterization of two deletions in the LDLR gene in Tunisian patients with familial hypercholesterolemia. Clin Chim Acta [Internet]. 2012;414:146–51. Available from: http://dx.doi.org/10.1016/j.cca.2012.08.002
- Slimani A, Jelassi A, Jguirim I, Najah M, Rebhi L, Omezzine A, et al. Effect of mutations in LDLR and PCSK9 genes on phenotypic variability in Tunisian familial hypercholesterolemia patients. Atherosclerosis [Internet]. 2012;222(1):158–66. Available from: http://dx.doi.org/10.1016/j.atherosclerosis.2012.02.018
- Visseren FLJ, MacH F, Smulders YM, Carballo D, Koskinas KC, Bäck M, et al. 2021 ESC Guidelines on cardiovascular disease prevention in clinical practice. Eur Heart J. 2021;42(34):3227–337.
- Jiang D, Niwa M, Koong AC, Diego S. Stdg. 2016;10(10):48–56.
- Desvignes JP, Bartoli M, Delague V, Krahn M, Miltgen M, Béroud C, et al. VarAFT: A variant annotation and filtration system for human next generation sequencing data. Nucleic Acids Res. 2018;46(W1):W545–53.
- Desmet FO, Hamroun D, Lalande M, Collod-Bëroud G, Claustres M, Béroud C. Human Splicing Finder: An online bioinformatics tool to predict splicing signals. Nucleic Acids Res. 2009;37(9):1–14.
- Dimassi S, Simonet T, Labalme A, Boutry-Kryza N, Campan-Fournier A, Lamy R, et al. Comparison of two next-generation sequencing kits for diagnosis of epileptic disorders with a user-friendly tool for displaying gene coverage, DeCovA. Appl Transl Genomics [Internet]. 2015;7:19–25. Available from: http://dx.doi.org/10.1016/j.atg.2015.10.001
- Hall TA. BIOEDIT: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/ NT. Nucleic Acids Symp Ser. 1999;41:95–8.
- Slimane MN, Lestavel S, Clavey V, Maatouk F, Ben Fahrat MH, Fruchart JC, et al. CYS127S (FH-Kairouan) and D245N (FH-Tozeur) mutations in the LDL receptor gene in Tunisian families with familial hypercholesterolaemia. J Med Genet. 2002;39(11):1–5.
- Jelassi A, Jguirim I, Najah M, Abid AM, Boughamoura L, Maatouk F, et al. Limited mutational heterogeneity in the LDLR gene in familial hypercholesterolemia in Tunisia. Atherosclerosis. 2009;203(2):449–53.
- Slimane MN, Lestavel S, Sun XM, Maatouk F, Soutar AK, Ben Farhat MH, et al. Fh-Souassi: A founder frameshift mutation in exon 10 of the LDL-receptor gene, associated with a mild phenotype in Tunisian families. Atherosclerosis. 2001;154(3):557–65.
- Brown MS, Goldstein JL. Lipoprotein Receptors in the Liver. J Clin Invest. 1983;72(3):743–7.
- Goldstein JL, Brown MS, Anderson RGW, Russell DW, Schneider WJ. ENDOCYTOSIS : Concepts Receptor System. Receptor. 1985;1–39.
- Barbosa TKA, Hirata RDC, Ferreira GM, Borges JB, Oliveira VF de, Gorjão R, et al. LDLR missense variants disturb structural conformation and LDLR activity in T-lymphocytes of Familial hypercholesterolemia patients. Gene. 2023;853(November 2022).
- Davis_nature_1987.pdf.
- Graça R, Alves AC, Zimon M, Pepperkok R, Bourbon M. Functional profiling of LDLR variants: Important evidence for variant classification: Functional profiling of LDLR variants. J Clin Lipidol. 2022;16(4):516–24.
- Koivisto UM, Viikari JS, Kontula K. Molecular characterization of minor gene rearrangements in Finnish patients with heterozygous familial hypercholesterolemia: Identification of two common missense mutations (Gly823→Asp and Leu380→His) and eight rare mutations of the LDL receptor gene. Am J Hum Genet. 1995;57(4):789–97.
- Sözen MM, Whittall R, Öner C, Tokatli A, Kalkanoǧlu HS, Dursun A, et al. The molecular basis of familial hypercholesterolaemia in Turkish patients. Atherosclerosis. 2005;180(1):63–71.
- Amsellem S, Briffaut D, Carrié A, Rabés JP, Girardet JP, Fredenrich A, et al. Intronic mutations outside of Alu-repeat-rich domains of the LDL receptor gene are a cause of familial hypercholesterolemia. Hum Genet. 2002;111(6):501–10.
- Damgaard D, Jensen JM, Larsen ML, Soerensen VR, Jensen HK, Gregersen N, et al. No genetic linkage or molecular evidence for involvement of the PCSK9, ARH or CYP7A1 genes in the Familial Hypercholesterolemia phenotype in a sample of Danish families without pathogenic mutations in the LDL receptor and apoB genes. Atherosclerosis. 2004;177(2):415–22.
- Alharbi KK, Aldahmesh MA, Spanakis E, Haddad L, Whittall RA, Chen XH, et al. Mutation scanning by meltMADGE: Validations using BRCA1 and LDLR, and demonstration of the potential to identify severe, moderate, silent, rare, and paucimorphic mutations in the general population. Genome Res. 2005;15(7):967–77.
- Yu L, Heere-Ress E, Boucher B, Defesche JC, Kastelein J, Lavoie MA, et al. Familial hypercholesterolemia. Acceptor splice site (G→C) mutation in intron 7 of the LDL-R gene: Alternate RNA editing causes exon 8 skipping or a premature stop codon in exon 8. LDL-R(Honduras-1) [LDL-R(1061(-1) G→C)]. Atherosclerosis. 1999;146(1):125–31.
- Jelassi A, Najah M, Jguirim I, Maatouk F, Lestavel S, Laroussi OS, et al. A novel splice site mutation of the LDL receptor gene in a Tunisian hypercholesterolemic family. Clin Chim Acta. 2008;392(1–2):25–9.
- Chamli A, Zaouak A, Frioui R, Fenniche S, Hammami H. Familial homozygous hypercholesterolemia with arcus cornea and xanthomas: A rare but serious entity. Clin Case Reports. 2023;11(3):1–3.
- Kefi R, Hsouna S, Ben Halim N, Lasram K, Romdhane L, Messai H, et al. Phylogeny and genetic structure of Tunisians and their position within Mediterranean populations. Mitochondrial DNA. 2015;26(4):593–604.
- Nazarenko MS, Sleptcov AA, Zarubin AA, Salakhov RR, Shevchenko AI, Tmoyan NA, et al. Calling and Phasing of Single-Nucleotide and Structural Variants of the LDLR Gene Using Oxford Nanopore MinION. Int J Mol Sci. 2023;24(5).
- Zhang X, Liu Q, Zhang H, Tan C, Zhu Q, Chen S, et al. Hyperlipidemia patients carrying LDLR splicing mutation c.1187-2A>G respond favorably to rosuvastatin and PCSK9 inhibitor evolocumab. Mol Genet Genomics [Internet]. 2022;297(3):833–41. Available from: https://doi.org/10.1007/s00438-022-01892-4
- Penson PE, Bruckert E, Marais D, Reiner Ž, Pirro M, Sahebkar A, et al. Step-by-step diagnosis and management of the nocebo/drucebo effect in statin-associated muscle symptoms patients: a position paper from the International Lipid Expert Panel (ILEP). J Cachexia Sarcopenia Muscle. 2022;13(3):1596–622.
- Kulseth MA, Berge KE, Bogsrud MP, Leren TP. Analysis of LDLR mRNA in patients with familial hypercholesterolemia revealed a novel mutation in intron 14, which activates a cryptic splice site. J Hum Genet. 2010;55(10):676–80.
- Shawar SM, Al-Drees MA, Ramadan AR, Ali NH, AlFadhli SM. The Arabic allele: A single base pair substitution activates a 10-base downstream cryptic splice acceptor site in exon 12 of LDLR and severely decreases LDLR expression in two unrelated Arab families with familial hypercholesterolemia. Atherosclerosis [Internet]. 2012;220(2):429–36. Available from: http://dx.doi.org/10.1016/j.atherosclerosis.2011.10.045