The primary mechanisms underlying atopic dermatitis

##plugins.themes.academic_pro.article.main##

Sara Missaoui
Asmaa Gaadi
Khaoula Oussama
Zahra Adam
Ahmed Aziz Bousfiha
Fouzia Hali

Abstract

Introduction: Atopic dermatitis (AD) is a complex skin disease frequently linked with other atopic symptoms such allergic rhinitis and asthma. The disease's history consists of persistent relapses with extreme pruritus, which lowers quality of life. AD has become a global health concern as its incidence has increased over the last few decades. It ranks as the third most common dermatologic disorder.


Aim: There are several open questions about the mechanisms underlying atopic dermatitis (AD), This review aims to emphasize the recent advances in scientific research regarding the pathophysiologic mechanism of AD and the clinical application of these factors.


Methods: A PubMed search was performed using the keywords “Atopic Dermatitis (AD)”,


“epidemiology”, “clinical presentation”, “diagnosis”, “pathophysiology”, “genetic defect”, “impaired skin barrier”, “immune dysregulation”. The search strategy included meta-analyses, clinical trial, observational studies, and reviews.


Results: Atopic dermatitis affects over 2 million children worldwide, with a lifetime incidence of up to 20%.


New data suggest that its incidence is still growing, particularly in low-income nations. AD is diagnosed clinically using the patient's medical history, particular clinical symptoms, and the elimination of other non-inflammatory skin conditions. The pathogenesis of AD is extremely complicated and involves several etiologies, including genetics, the microbiome, abnormalities in the skin barrier, along with dysfunctional innate and adaptive immune systems.


Conclusion: Recent research has improved our understanding of disease pathophysiology in atopic dermatitis.


Current and future clinical trials are expected to continue clarifying this complex and heterogeneous skin disease, and to develop medications that promise more effective therapy, particularly for individuals with limited response to ...(abstract truncated at 250 words)

Keywords:

Atopic Dermatitis (AD), clinical presentation, diagnosis, pathophysiology, genetic, treatment

##plugins.themes.academic_pro.article.details##

References

  1. Mandlik DS, Mandlik SK. Atopic dermatitis: new insight into the etiology, pathogenesis, diagnosis and novel treatment strategies. Immunopharmacol Immunotoxicol. 4 mars 2021;43(2):105‑25.
  2. Torres T, Ferreira EO, Gonçalo M, Mendes-Bastos P, Selores M, Filipe P. Update on Atopic Dermatitis. Acta Médica Port. 2 sept 2019;32(9):606‑13.
  3. Thomsen SF. Atopic Dermatitis: Natural History, Diagnosis, and Treatment. ISRN Allergy. 2 avr 2014;2014:1‑7.
  4. Kaufman BP, Guttman‐Yassky E, Alexis AF. Atopic dermatitis in diverse racial and ethnic groups—Variations in epidemiology, genetics, clinical presentation and treatment. Exp Dermatol. avr 2018;27(4):340‑57.
  5. Nutten S. Atopic Dermatitis: Global Epidemiology and Risk Factors. Ann Nutr Metab. 2015;66(Suppl. 1):8‑16.
  6. Williams H, Stewart A, Von Mutius E, Cookson W, Anderson HR. Is eczema really on the increase worldwide? J Allergy Clin Immunol. avr 2008;121(4):947-954.e15.
  7. Weidinger S, Beck LA, Bieber T, Kabashima K, Irvine AD. Atopic dermatitis. Nat Rev Dis Primer. 21 juin 2018;4(1):1.
  8. Kobyletzki L, Bornehag C, Breeze E, Larsson M, Lindström C, Svensson Å. Factors Associated with Remission of Eczema in Children: A Population-based Follow-up Study. Acta Derm Venereol. 2014;94(2):179‑84.
  9. Popovic DA. Absorption of rat liver ribosomal ribonucleic acids on agar gels. Biochimie. 1975;57(6‑7):841‑2.
  10. Makowska K, Nowaczyk J, Blicharz L, Waśkiel-Burnat A, Czuwara J, Olszewska M, et al. Immunopathogenesis of Atopic Dermatitis: Focus on Interleukins as Disease Drivers and Therapeutic Targets for Novel Treatments. Int J Mol Sci. 2 janv 2023;24(1):781.
  11. Bylund S, Kobyletzki L, Svalstedt M, Svensson �. Prevalence and Incidence of Atopic Dermatitis: A Systematic Review. Acta Derm Venereol. 2020;100(12):adv00160.
  12. Hay RJ, Johns NE, Williams HC, Bolliger IW, Dellavalle RP, Margolis DJ, et al. The Global Burden of Skin Disease in 2010: An Analysis of the Prevalence and Impact of Skin Conditions. J Invest Dermatol. juin 2014;134(6):1527‑34.
  13. Barbarot S, Auziere S, Gadkari A, Girolomoni G, Puig L, Simpson EL, et al. Epidemiology of atopic dermatitis in adults: Results from an international survey. Allergy. juin 2018;73(6):1284‑93.
  14. Ait‐Khaled N, Odhiambo J, Pearce N, Adjoh KS, Maesano IA, Benhabyles B, et al. Prevalence of symptoms of asthma, rhinitis and eczema in 13‐ to 14‐year‐old children in Africa: the International Study of Asthma and Allergies in Childhood Phase III. Allergy. mars 2007;62(3):247‑58.
  15. Weidinger S, Novak N. Atopic dermatitis. The Lancet. mars 2016;387(10023):1109‑22.
  16. Kowalska-Olędzka E, Czarnecka M, Baran A. Epidemiology of atopic dermatitis in Europe. J Drug Assess. 1 janv 2019;8(1):126‑8.
  17. Deckers IAG, McLean S, Linssen S, Mommers M, Van Schayck CP, Sheikh A. Investigating International Time Trends in the Incidence and Prevalence of Atopic Eczema 1990–2010: A Systematic Review of Epidemiological Studies. Kirk M, éditeur. PLoS ONE. 11 juill 2012;7(7):e39803.
  18. Pefura-Yone EW, Jeddi Z, Kouotou EA, Delimi B, El Gueddari Y, Karkar R, et al. État des lieux de la dermatite atopique de l’enfant et de l’adulte en Afrique sub-saharienne et au Maghreb. Rev Fr Allergol. juin 2020;60(4):297‑9.
  19. Bieber T, D’Erme AM, Akdis CA, Traidl-Hoffmann C, Lauener R, Schäppi G, et al. Clinical phenotypes and endophenotypes of atopic dermatitis: Where are we, and where should we go? J Allergy Clin Immunol. avr 2017;139(4):S58‑64.
  20. Williams HC, Jburney PG, Hay RJ, Archer CB, Shipley MJ, Ahunter JJ, et al. The U.K. Working Party’s Diagnostic Criteria for Atopic Dermatitis..: I. Derivation of a minimum set of discriminators for atopic dermatitis. Br J Dermatol. sept 1994;131(3):383‑96.
  21. Williams HC, Jburney PG, Strachan D, Hay RJ, Atopic Dermatitis Diagnostic Criteria Working Party. The U.K. Working Party’s Diagnostic Criteria for Atopic Dermatitis II. Observer variation of clinical diagnosis and signs of atopic dermatitis. Br J Dermatol. sept 1994;131(3):397‑405.
  22. Williams HC, Jburney PG, Pembroke AC, Hay RJ, Atopic Dermatitis Diagnostic Criteria Working Party. The U.K. Working Party’s Diagnostic Criteria for Atopic Dermatitis. III. Independent hospital validation. Br J Dermatol. sept 1994;131(3):406‑16.
  23. Kapur S, Watson W, Carr S. Atopic dermatitis. Allergy Asthma Clin Immunol. sept 2018;14(S2):52.
  24. Gandhi NA, Bennett BL, Graham NMH, Pirozzi G, Stahl N, Yancopoulos GD. Targeting key proximal drivers of type 2 inflammation in disease. Nat Rev Drug Discov. janv 2016;15(1):35‑50.
  25. Eichenfield LF, Stripling S, Fung S, Cha A, O’Brien A, Schachner LA. Recent Developments and Advances in Atopic Dermatitis: A Focus on Epidemiology, Pathophysiology, and Treatment in the Pediatric Setting. Pediatr Drugs. juill 2022;24(4):293‑305.
  26. Clausen ML, Agner T, Lilje B, Edslev SM, Johannesen TB, Andersen PS. Association of Disease Severity With Skin Microbiome and Filaggrin Gene Mutations in Adult Atopic Dermatitis. JAMA Dermatol. 1 mars 2018;154(3):293.
  27. Bieber T. Atopic dermatitis: an expanding therapeutic pipeline for a complex disease. Nat Rev Drug Discov. janv 2022;21(1):21‑40.
  28. Eichenfield LF, Stripling S, Fung S, Cha A, O’Brien A, Schachner LA. Recent Developments and Advances in Atopic Dermatitis: A Focus on Epidemiology, Pathophysiology, and Treatment in the Pediatric Setting. Pediatr Drugs. juill 2022;24(4):293‑305.
  29. Furue M, Ulzii D, Vu Y, Tsuji G, Kido-Nakahara M, Nakahara T. Pathogenesis of Atopic Dermatitis: Current Paradigm. Iran J Immunol [Internet]. juin 2019 [cité 4 juin 2024];16(2). Disponible sur: https://doi.org/10.22034/iji.2019.80253
  30. Løset M, Brown SJ, Saunes M, Hveem K. Genetics of Atopic Dermatitis: From DNA Sequence to Clinical Relevance. Dermatology. 2019;235(5):355‑64.
  31. Wadonda-Kabondo N, Sterne JAC, Golding J, Kennedy CTC, Archer CB, Dunnill MGS, et al. Association of parental eczema, hayfever, and asthma with atopic dermatitis in infancy: birth cohort study. Arch Dis Child. 1 oct 2004;89(10):917‑21.
  32. Schultz Larsen FV, Holm NV. Atopic dermatitis in a population based twin series. Concordance rates and heritability estimation. Acta Derm Venereol Suppl (Stockh). 1985;114:159.
  33. Larsen FS. Atopic dermatitis: A genetic-epidemiologic study in a population-based twin sample. J Am Acad Dermatol. mai 1993;28(5):719‑23.
  34. the EArly Genetics and Lifecourse Epidemiology (EAGLE) Eczema Consortium. Multi-ancestry genome-wide association study of 21,000 cases and 95,000 controls identifies new risk loci for atopic dermatitis. Nat Genet. déc 2015;47(12):1449‑56.
  35. Nedoszytko B, Reszka E, Gutowska-Owsiak D, Trzeciak M, Lange M, Jarczak J, et al. Genetic and Epigenetic Aspects of Atopic Dermatitis. Int J Mol Sci. 4 sept 2020;21(18):6484.
  36. Sroka-Tomaszewska J, Trzeciak M. Molecular Mechanisms of Atopic Dermatitis Pathogenesis. Int J Mol Sci. 16 avr 2021;22(8):4130.
  37. Rodríguez E, Baurecht H, Herberich E, Wagenpfeil S, Brown SJ, Cordell HJ, et al. Meta-analysis of filaggrin polymorphisms in eczema and asthma: Robust risk factors in atopic disease. J Allergy Clin Immunol. juin 2009;123(6):1361-1370.e7.
  38. Brown SJ, Irwin McLean WH. One Remarkable Molecule: Filaggrin. J Invest Dermatol. mars 2012;132(3):751‑62.
  39. Gao PS, Rafaels NM, Hand T, Murray T, Boguniewicz M, Hata T, et al. Filaggrin mutations that confer risk of atopic dermatitis confer greater risk for eczema herpeticum. J Allergy Clin Immunol. sept 2009;124(3):507-513.e7.
  40. Gutowska-Owsiak D, Salimi M, Selvakumar TA, Wang X, Taylor S, Ogg GS. Histamine exerts multiple effects on expression of genes associated with epidermal barrier function. J Investig Allergol Clin Immunol. 2014;24(4):231‑9.
  41. Gutowska‐Owsiak D, Schaupp AL, Salimi M, Selvakumar TA, McPherson T, Taylor S, et al. IL‐17 downregulates filaggrin and affects keratinocyte expression of genes associated with cellular adhesion. Exp Dermatol. févr 2012;21(2):104‑10.
  42. Martin MJ, Estravís M, García-Sánchez A, Dávila I, Isidoro-García M, Sanz C. Genetics and Epigenetics of Atopic Dermatitis: An Updated Systematic Review. Genes. 18 avr 2020;11(4):442.
  43. Taniguchi T, Asano Y, Hatano M, Tamaki Z, Tomita M, Kawashima T, et al. Effects of bosentan on nondigital ulcers in patients with systemic sclerosis: Effects of bosentan on nondigital ulcers in SSc. Br J Dermatol. févr 2012;166(2):417‑21.
  44. Gschwandtner M, Mildner M, Mlitz V, Gruber F, Eckhart L, Werfel T, et al. Histamine suppresses epidermal keratinocyte differentiation and impairs skin barrier function in a human skin model. Allergy. janv 2013;68(1):37‑47.
  45. Bin L, Leung DYM. Genetic and epigenetic studies of atopic dermatitis. Allergy Asthma Clin Immunol. déc 2016;12(1):52.
  46. Gimalova GF, Karunas AS, Fedorova YuYu, Gumennaya ER, Levashova SV, Khismatullina ZR, et al. Association of polymorphisms in the toll-like receptor genes with atopic dermatitis in the Republic of Bashkortostan. Mol Biol. mars 2014;48(2):227‑37.
  47. Zhang Y, Wang HC, Feng C, Yan M. Analysis of the Association of Polymorphisms rs5743708 in TLR2 and rs4986790 in TLR4 with Atopic Dermatitis Risk. Immunol Invest. 17 févr 2019;48(2):169‑80.
  48. Trzeciak M, Wesserling M, Bandurski T, Glen J, Nowicki R, Pawelczyk T. Association of a Single Nucleotide Polymorphism in a Late Cornified Envelope-like Proline-rich 1 Gene (LELP1) with Atopic Dermatitis. Acta Derm Venereol. 2016;96(4):459‑63.
  49. Sokołowska‐Wojdyło M, Gleń J, Zabłotna M, Rębała K, Trzeciak M, Sikorska M, et al. The frequencies of haplotypes defined by three polymorphisms of the IL ‐31 gene: −1066, −2057, and IVS 2+12 in P olish patients with atopic dermatitis. Int J Dermatol. janv 2015;54(1):62‑7.
  50. Trzeciak M, Gleń J, Roszkiewicz J, Nedoszytko B. Association of single nucleotide polymorphism of interleukin‐18 with atopic dermatitis. J Eur Acad Dermatol Venereol. janv 2010;24(1):78‑9.
  51. Trzeciak M, Gleń J, Bandurski T, Sokołowska-Wojdyło M, Wilkowska A, Roszkiewicz J. Relationship between serum levels of interleukin-18, IgE and disease severity in patients with atopic dermatitis: Relationship between serum levels of IL-18, IgE and disease severity in AD. Clin Exp Dermatol. oct 2011;36(7):728‑32.
  52. Nedoszytko B, Niedoszytko M, Lange M, Van Doormaal J, Gleń J, Zabłotna M, et al. Interleukin‐13 promoter gene polymorphism ‐1112C/T is associated with the systemic form of mastocytosis. Allergy. févr 2009;64(2):287‑94.
  53. Wilkowska A, Gleń J, Zabłotna M, Trzeciak M, Ryduchowska M, Sobjanek M, et al. The association of GM ‐ CSF –677A/C promoter gene polymorphism with the occurrence and severity of atopic dermatitis in a P olish population. Int J Dermatol [Internet]. mars 2014 [cité 2 juin 2024];53(3). Disponible sur: https://onlinelibrary.wiley.com/doi/10.1111/ijd.12245
  54. Tsuji G, Hashimoto-Hachiya A, Kiyomatsu-Oda M, Takemura M, Ohno F, Ito T, et al. Aryl hydrocarbon receptor activation restores filaggrin expression via OVOL1 in atopic dermatitis. Cell Death Dis. 13 juill 2017;8(7):e2931‑e2931.
  55. Zablotna M, Sobjanek M, Glen J, Niedoszytko M, Wilkowska A, Roszkiewicz J, et al. Association between the –1154 G/A promoter polymorphism of the vascular endothelial growth factor gene and atopic dermatitis. J Eur Acad Dermatol Venereol. janv 2010;24(1):91‑2.
  56. Szczepańska M, Blicharz L, Nowaczyk J, Makowska K, Goldust M, Waśkiel-Burnat A, et al. The Role of the Cutaneous Mycobiome in Atopic Dermatitis. J Fungi. 31 oct 2022;8(11):1153.
  57. Lyons JJ, Milner JD, Stone KD. Atopic Dermatitis in Children. Immunol Allergy Clin North Am. févr 2015;35(1):161‑83.
  58. De Benedetto A, Agnihothri R, McGirt LY, Bankova LG, Beck LA. Atopic Dermatitis: A Disease Caused by Innate Immune Defects? J Invest Dermatol. janv 2009;129(1):14‑30.
  59. Breuer K, HAussler S, Kapp A, Werfel T. Staphylococcus aureus: colonizing features and influence of an antibacterial treatment in adults with atopic dermatitis. Br J Dermatol. juill 2002;147(1):55‑61.
  60. Kim BS, Kim JY, Lim HJ, Lee WJ, Lee SJ, Kim JM, et al. Colonizing features of Staphylococcus aureus in early childhood atopic dermatitis and in mothers: a cross-sectional comparative study done at four kindergartens in Daegu, South Korea. Ann Allergy Asthma Immunol. avr 2011;106(4):323‑9.
  61. Park HY, Kim CR, Huh IS, Jung MY, Seo EY, Park JH, et al. Staphylococcus aureus Colonization in Acute and Chronic Skin Lesions of Patients with Atopic Dermatitis. Ann Dermatol. 2013;25(4):410.
  62. Shi B, Leung DYM, Taylor PA, Li H. Methicillin-Resistant Staphylococcus aureus Colonization Is Associated with Decreased Skin Commensal Bacteria in Atopic Dermatitis. J Invest Dermatol. juill 2018;138(7):1668‑71.
  63. Totté JEE, Van Der Feltz WT, Hennekam M, Van Belkum A, Van Zuuren EJ, Pasmans SGMA. Prevalence and odds of S taphylococcus aureus carriage in atopic dermatitis: a systematic review and meta-analysis. Br J Dermatol. oct 2016;175(4):687‑95.
  64. Geoghegan JA, Irvine AD, Foster TJ. Staphylococcus aureus and Atopic Dermatitis: A Complex and Evolving Relationship. Trends Microbiol. juin 2018;26(6):484‑97.
  65. Zollner, Wichelhaus, Hartung, Von Mallinckrodt, Wagner, Brade, et al. Colonization with superantigen‐producing Staphylococcus aureus is associated with increased severity of atopic dermatitis. Clin Exp Allergy. juill 2000;30(7):994‑1000.
  66. O’Regan GM, Irvine AD. The role of filaggrin loss-of-function mutations in atopic dermatitis. Curr Opin Allergy Clin Immunol. oct 2008;8(5):406‑10.
  67. Proksch E, Brandner JM, Jensen J. The skin: an indispensable barrier. Exp Dermatol. déc 2008;17(12):1063‑72.
  68. Clausen M ‐L., Edslev SM, Nørreslet LB, Sørensen JA, Andersen PS, Agner T. Temporal variation of Staphylococcus aureus clonal complexes in atopic dermatitis: a follow‐up study. Br J Dermatol. janv 2019;180(1):181‑6.
  69. Leung DYM. New Insights into Atopic Dermatitis: Role of Skin Barrier and Immune Dysregulation. Allergol Int. 2013;62(2):151‑61.
  70. Clausen M ‐L., Edslev SM, Andersen PS, Clemmensen K, Krogfelt KA, Agner T. Staphylococcus aureus colonization in atopic eczema and its association with filaggrin gene mutations. Br J Dermatol. nov 2017;177(5):1394‑400.
  71. Cho SH, Strickland I, Boguniewicz M, Leung DYM. Fibronectin and fibrinogen contribute to the enhanced binding of Staphylococcus aureus to atopic skin. J Allergy Clin Immunol. août 2001;108(2):269‑74.
  72. Ong PY, Ohtake T, Brandt C, Strickland I, Boguniewicz M, Ganz T, et al. Endogenous Antimicrobial Peptides and Skin Infections in Atopic Dermatitis. N Engl J Med. 10 oct 2002;347(15):1151‑60.
  73. Salimi M, Barlow JL, Saunders SP, Xue L, Gutowska-Owsiak D, Wang X, et al. A role for IL-25 and IL-33–driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 16 déc 2013;210(13):2939‑50.
  74. Silverberg JI, Kantor R. The Role of Interleukins 4 and/or 13 in the Pathophysiology and Treatment of Atopic Dermatitis. Dermatol Clin. juill 2017;35(3):327‑34.
  75. Sonkoly E, Muller A, Lauerma AI, Pivarcsi A, Soto H, Kemeny L, et al. IL-31: A new link between T cells and pruritus in atopic skin inflammation. J Allergy Clin Immunol. févr 2006;117(2):411‑7.
  76. Feld M, Garcia R, Buddenkotte J, Katayama S, Lewis K, Muirhead G, et al. The pruritus- and TH2-associated cytokine IL-31 promotes growth of sensory nerves. J Allergy Clin Immunol. août 2016;138(2):500-508.e24.
  77. Tan Q, Yang H, Liu E, Wang H. P38/ERK MAPK signaling pathways are involved in the regulation of filaggrin and involucrin by IL-17. Mol Med Rep. déc 2017;16(6):8863‑7.
  78. Leonardi S, Cuppari C, Manti S, Filippelli M, Parisi GF, Borgia F, et al. Serum interleukin 17, interleukin 23, and interleukin 10 values in children with atopic eczema/dermatitis syndrome (AEDS): Association with clinical severity and phenotype. Allergy Asthma Proc. 1 janv 2015;36(1):74‑81.
  79. Brunner PM, Leung DYM, Guttman-Yassky E. Immunologic, microbial, and epithelial interactions in atopic dermatitis. Ann Allergy Asthma Immunol. janv 2018;120(1):34‑41.
  80. Seegräber M, Srour J, Walter A, Knop M, Wollenberg A. Dupilumab for treatment of atopic dermatitis. Expert Rev Clin Pharmacol. 4 mai 2018;11(5):467‑74.
  81. Arkwright PD, Motala C, Subramanian H, Spergel J, Schneider LC, Wollenberg A. Management of Difficult-to-Treat Atopic Dermatitis. J Allergy Clin Immunol Pract. mars 2013;1(2):142‑51.
  82. Puar N, Chovatiya R, Paller AS. New treatments in atopic dermatitis. Ann Allergy Asthma Immunol. janv 2021;126(1):21‑31.
  83. Le Floc’h A, Allinne J, Nagashima K, Scott G, Birchard D, Asrat S, et al. Dual blockade of IL‐4 and IL‐13 with dupilumab, an IL‐4Rα antibody, is required to broadly inhibit type 2 inflammation. Allergy. mai 2020;75(5):1188‑204.
  84. Pappa G, Sgouros D, Theodoropoulos K, Kanelleas A, Bozi E, Gregoriou S, et al. The IL-4/-13 Axis and Its Blocking in the Treatment of Atopic Dermatitis. J Clin Med. 24 sept 2022;11(19):5633.
  85. Serra-Baldrich E, Santamaría-Babí LF, Francisco Silvestre J. Nemolizumab: un innovador tratamiento biológico para el control de la interleuquina 31 (IL-31) clave en la dermatitis atópica y el prurigo nodular. Actas Dermo-Sifiliográficas. juill 2022;113(7):674‑84.
  86. Newsom M, Bashyam AM, Balogh EA, Feldman SR, Strowd LC. New and Emerging Systemic Treatments for Atopic Dermatitis. Drugs. juill 2020;80(11):1041‑52.
  87. Simpson EL, Guttman‐Yassky E, Eichenfield LF, Boguniewicz M, Bieber T, Schneider S, et al. Tralokinumab therapy for moderate‐to‐severe atopic dermatitis: Clinical outcomes with targeted IL ‐13 inhibition. Allergy. nov 2023;78(11):2875‑91.
  88. Lee GR, Lee DE, Shi VY. Emerging Targeted Treatments. In: Atopic Dermatitis : Inside Out Or Outside in [Internet]. Elsevier; 2023 [cité 4 juin 2024]. p. 237‑51. Disponible sur: https://linkinghub.elsevier.com/retrieve/pii/B9780323847445000231
  89. Menzies-Gow A, Corren J, Bourdin A, Chupp G, Israel E, Wechsler ME, et al. Tezepelumab in Adults and Adolescents with Severe, Uncontrolled Asthma. N Engl J Med. 13 mai 2021;384(19):1800‑9.
  90. Chen YL, Gutowska-Owsiak D, Hardman CS, Westmoreland M, MacKenzie T, Cifuentes L, et al. Proof-of-concept clinical trial of etokimab shows a key role for IL-33 in atopic dermatitis pathogenesis. Sci Transl Med. 23 oct 2019;11(515):eaax2945.
  91. Guttman-Yassky E, Brunner PM, Neumann AU, Khattri S, Pavel AB, Malik K, et al. Efficacy and safety of fezakinumab (an IL-22 monoclonal antibody) in adults with moderate-to-severe atopic dermatitis inadequately controlled by conventional treatments: A randomized, double-blind, phase 2a trial. J Am Acad Dermatol. mai 2018;78(5):872-881.e6.
  92. Kang EG, Narayana PK, Pouliquen IJ, Lopez MC, Ferreira‐Cornwell MC, Getsy JA. Efficacy and safety of mepolizumab administered subcutaneously for moderate to severe atopic dermatitis. Allergy. avr 2020;75(4):950‑3.
  93. Oldhoff JM, Darsow U, Werfel T, Katzer K, Wulf A, Laifaoui J, et al. Anti‐IL‐5 recombinant humanized monoclonal antibody (Mepolizumab) for the treatment of atopic dermatitis. Allergy. mai 2005;60(5):693‑6.
  94. Pareek A, Kumari L, Pareek A, Chaudhary S, Ratan Y, Janmeda P, et al. Unraveling Atopic Dermatitis: Insights into Pathophysiology, Therapeutic Advances, and Future Perspectives. Cells. 28 févr 2024;13(5):425.
  95. Chovatiya R, Paller AS. JAK inhibitors in the treatment of atopic dermatitis. J Allergy Clin Immunol. oct 2021;148(4):927‑40.
  96. Nakagawa H, Nemoto O, Igarashi A, Saeki H, Kabashima K, Oda M, et al. Delgocitinib ointment in pediatric patients with atopic dermatitis: A phase 3, randomized, double-blind, vehicle-controlled study and a subsequent open-label, long-term study. J Am Acad Dermatol. oct 2021;85(4):854‑62.
  97. Nakagawa H, Nemoto O, Igarashi A, Nagata T. Efficacy and safety of topical JTE-052, a Janus kinase inhibitor, in Japanese adult patients with moderate-to-severe atopic dermatitis: a phase II, multicentre, randomized, vehicle-controlled clinical study. Br J Dermatol. févr 2018;178(2):424‑32.
  98. Beck LA, Cork MJ, Amagai M, De Benedetto A, Kabashima K, Hamilton JD, et al. Type 2 Inflammation Contributes to Skin Barrier Dysfunction in Atopic Dermatitis. JID Innov. sept 2022;2(5):100131.
  99. Sakata D, Uruno T, Matsubara K, Andoh T, Yamamura K, Magoshi Y, et al. Selective role of neurokinin B in IL-31–induced itch response in mice. J Allergy Clin Immunol. oct 2019;144(4):1130-1133.e8.
  100. Li H, Zhang Z, Zhang H, Guo Y, Yao Z. Update on the Pathogenesis and Therapy of Atopic Dermatitis. Clin Rev Allergy Immunol. déc 2021;61(3):324‑38.
  101. Ultsch M, Bevers J, Nakamura G, Vandlen R, Kelley RF, Wu LC, et al. Structural Basis of Signaling Blockade by Anti-IL-13 Antibody Lebrikizumab. J Mol Biol. avr 2013;425(8):1330‑9.
  102. Guttman-Yassky E, Blauvelt A, Eichenfield LF, Paller AS, Armstrong AW, Drew J, et al. Efficacy and Safety of Lebrikizumab, a High-Affinity Interleukin 13 Inhibitor, in Adults With Moderate to Severe Atopic Dermatitis: A Phase 2b Randomized Clinical Trial. JAMA Dermatol. 1 avr 2020;156(4):411.
  103. Kim BE, Leung DYM, Boguniewicz M, Howell MD. Loricrin and involucrin expression is down-regulated by Th2 cytokines through STAT-6. Clin Immunol. mars 2008;126(3):332‑7.
  104. De Bruin-Weller M, Thaçi D, Smith CH, Reich K, Cork MJ, Radin A, et al. Dupilumab with concomitant topical corticosteroid treatment in adults with atopic dermatitis with an inadequate response or intolerance to ciclosporin A or when this treatment is medically inadvisable: a placebo-controlled, randomized phase III clinical t. Br J Dermatol. mai 2018;178(5):1083‑101.
  105. Simpson EL, Bieber T, Guttman-Yassky E, Beck LA, Blauvelt A, Cork MJ, et al. Two Phase 3 Trials of Dupilumab versus Placebo in Atopic Dermatitis. N Engl J Med. 15 déc 2016;375(24):2335‑48.
  106. Hu X, Li J, Fu M, Zhao X, Wang W. The JAK/STAT signaling pathway: from bench to clinic. Signal Transduct Target Ther. 26 nov 2021;6(1):1‑33.
  107. Villarino AV, Kanno Y, O’Shea JJ. Mechanisms and consequences of Jak–STAT signaling in the immune system. Nat Immunol. avr 2017;18(4):374‑84.
  108. Malhotra N, Yoon J, Leyva-Castillo JM, Galand C, Archer N, Miller LS, et al. IL-22 derived from γδ T cells restricts Staphylococcus aureus infection of mechanically injured skin. J Allergy Clin Immunol. oct 2016;138(4):1098-1107.e3.
  109. Gutowska-Owsiak D, Schaupp AL, Salimi M, Taylor S, Ogg GS. Interleukin-22 downregulates filaggrin expression and affects expression of profilaggrin processing enzymes: IL-22 affects filaggrin expression at multiple levels. Br J Dermatol. sept 2011;165(3):492‑8.