Distribution of CYP3A4 and CYP3A5 Polymorphisms and Genotype Combination Implicated in Tacrolimus Metabolism

##plugins.themes.academic_pro.article.main##

Ibtissem Hannachi
Zohra Chadli
Emna Kerkeni
Amel Chaabane
Nadia Ben Fredj
Naceur Boughattas
Karim Aouam

Abstract

.


Introduction: Human cytochrome P450 (CYP), particularly CYP3A4 and CYP3A5 is mainly responsible for the metabolism of several drugs including tacrolimus. Significant interracial/interethnic variation in the expression and function of CYP3A5 and CYP3A4 is caused by Single Nucleotide Polymorphisms (SNPs) of genes encoding these proteins.


Aim: The present study investigated the genetic polymorphisms CYP3A4*1B, CYP3A4*22, and CYP3A5*3 in the Tunisian population.


Methods: We included in this study, Tunisian healthy subjects and renal transplant recipients receiving tacrolimus. CYP3A4 and CYP3A5 genotyping were performed using polymerase chain reaction-restriction fragment length polymorphism (PCR–RFLP). According to the genotypic combination of the three CYP polymorphisms, we have identified for the first time four metabolizers statuses: slow metabolizers (SM), intermediate metabolizers (IM), high metabolizers (HM), and extensive metabolizers (EM).


Results: A total of 101 renal transplant patients and 102 healthy subjects were included. Our results showed that the predominant alleles in the Tunisian population are a wild type of CYP3A4*1B (0.87), likewise CYP3A4*22 (0.975) and CYP3A5*3 (0.82). The genotype frequencies of CYP3A4*1B, CYP3A4*22, and CYP3A5*3 were found to be 3.9%, 0.0%, and 69.5%, respectively. Also, we found a significant linkage disequilibrium between CYP3A4*1B and CYP3A5*3. We approved that the IM is the predominant phenotype in our population with 124 patients followed by and EM with 41 patients, HM in 29 patients and SM in 9 patients. These results showed that Tunisians are most similar to Caucasians. Conclusion: The genetic background of these enzymes CYP3A4*1B, CYP3A4*22, and CYP3A5*3 ...(abstract  truncated at 250 words).

Keywords:

CYP3A4*1B, CYP3A4*22, CYP3A5*3, tacrolimus, Pharmacogenetics, Tunisian Population

##plugins.themes.academic_pro.article.details##

References

  1. Lakhman SS, Ma Q, Morse GD. Pharmacogenomics of CYP3A: Considerations for HIV treatment. Pharmacogenomics. 2009;10(8):1323–39.
  2. Rainone A, Lucia DDE, Morelli CD, Valente D, Catapano O, Caraglia M. Clinically relevant of cytochrome P450 family enzymes for drug-drug interaction in anticancer therapy. World Cancer Res J. 2015;2(2):1–7.
  3. Yousef AM, Bulatova NR, Newman W, Hakooz N, Ismail S, Qusa H, et al. Allele and genotype frequencies of the polymorphic cytochrome P450 genes (CYP1A1, CYP3A4, CYP3A5, CYP2C9 and CYP2C19) in the Jordanian population. Mol Biol Rep. 2012;39:3423–33.
  4. Drögemöller B, Plummer M, Korkie L, Agenbag G, Dunaiski A, Niehaus D, et al. Characterization of the genetic variation present in CYP3A4 in three South African populations. Front Genet. 2013;4(17):1–11.
  5. Elens L, Bouamar R, Hesselink DA, Haufroid V, Van Gelder T, Van Schaik RHN. The new CYP3A4 intron 6 C>T polymorphism (CYP3A4*22) is associated with an increased risk of delayed graft function and worse renal function in cyclosporine-treated kidney transplant patients. Pharmacogenet Genomics. 2012;22(5):373–80.
  6. Amirimani B, Ning B, Deitz AC, Weber BL, Kadlubar FF, Rebbeck TR. Increased Transcriptional Activity of the CYP3A4*1B Promoter Variant. Environ Mol Mutagen. 2003;42:299–305.
  7. Aouam K, Kolsi A, Kerkeni E, Ben Fredj N, Chaabane A, Monastiri K, et al. Influence of combined CYP3A4 and CYP3A5 single-nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: A study according to the post-transplant phase. Pharmacogenomics. 2015;16(18):2045–54.
  8. Becker ML, Visser LE, Van Schaik RHN, Hofman A, Uitterlinden AG, Stricker BHC. Influence of genetic variation in CYP3A4 and ABCB1 on dose decrease or switching during simvastatin and atorvastatin therapy. Pharmacoepidemiol Drug Saf. 2010;19:75–81.
  9. Wang D, Guo Y, Wrighton SA, Cooke GE, Sadee W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 2011;11(4):274–86.
  10. Garsa AA, McLeod HL, Marsh S. CYP3A4 and CYP3A5 genotyping by pyrosequencing. BMC Med Genet. 2005;6(19):1–5.
  11. Hu YF, He J, Chen GL, Wang D, Liu ZQ, Zhang C, et al. CYP3A5*3 and CYP3A4*18 single nucleotide polymorphisms in a Chinese population. Clin Chim Acta. 2005;353(1–2):187–92.
  12. Hannachi I, Chadli Z, Kerkeni E, Kolsi A, Hammouda M, Chaabane A, et al. Influence CYP3A polymorphisms on tacrolimus pharmacokinetics in kidney transplant recipients. Pharmacogenomics J. 2020;21(1):69–77.
  13. Miller SA, Dykes DD, Polesky HF. A simple salting out procedure for extracting DNA from human nucleated cells. Nucleic Acids Res. 1988;16(3):1215.
  14. Tsuchiya N, Satoh S, Tada H, Li Z, Ohyama C, Sato K, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetics of tacrolimus in renal transplant recipients. Transplantation. 2004;78(8):1182–7.
  15. van der Weide K, van der Weide J. The Influence of the CYP3A4*22 Polymorphism and CYP2D6 Polymorphisms on Serum Concentrations of Aripiprazole, Haloperidol, Pimozide, and Risperidone in Psychiatric Patients. J Clin Psychopharmacol. 2015;35(3):228–36.
  16. Deininger KM, Vu A, Page RL, Ambardekar A V., Lindenfeld JA, Aquilante CL. CYP3A pharmacogenetics and tacrolimus disposition in adult heart transplant recipients. Clin Transplant. 2016;30(9):1074–81.
  17. Chbili C, Fathallah N, Laouani A, Nouira M, Hassine A, Ben Amor S, et al. Effects of EPHX1 and CYP3A4*22 genetic polymorphisms on carbamazepine metabolism and drug response among Tunisian epileptic patients. J Neurogenet. 2016;30(1):16–21.
  18. Novillo A, Romero-Lorca A, Gaibar M, Bahri R, Harich N, Sánchez-Cuenca D, et al. Genetic diversity of CYP3A4 and CYP3A5 polymorphisms in North African populations from Morocco and Tunisia. Int J Biol Markers. 2015;1–4.
  19. Sata F, Sapone A, Elizondo G, Stocker P, Miller VP, Zheng W, et al. CΥP3A4 allelic variants with amino acid substitutions in exons 7 and 12: Evidence for an allelic variant with altered catalytic activity. Clin Pharmacol Ther. 2000;67(1):48–55.
  20. Lamba JK, Lin YS, Schuetz EG, Thummel KE. Genetic contribution to variable human CYP3A-mediated metabolism. Adv Drug Deliv Rev. 2012;64(SUPPL.):256–69.
  21. Elens L, Van Gelder T, Hesselink DA, Haufroid V, Van Schaik RHN. CYP3A4*22: Promising newly identified CYP3A4 variant allele for personalizing pharmacotherapy. Pharmacogenomics. 2013;14(1):47–62.
  22. Elens L, Becker ML, Haufroid V, Hofman A, Visser LE, Uitterlinden AG, et al. Novel CYP3A4 intron 6 single nucleotide polymorphism is associated with simvastatin-mediated cholesterol reduction in the Rotterdam Study. Pharmacogenet Genomics. 2011;21(12):861-866.
  23. Moes DJAR, Swen JJ, Den Hartigh J, Van Der Straaten T, Homan Van Der Heide JJ, Sanders JS, et al. Effect of CYP3A4*22, CYP3A5*3, and CYP3A combined genotypes on cyclosporine, everolimus, and tacrolimus pharmacokinetics in renal transplantation. CPT Pharmacometrics Syst Pharmacol. 2014;3-e100:1–11.
  24. Wang D, Sadee W. The making of a CYP3A biomarker panel for guiding drug therapy. J Pers Med. 2012;2(4):175–91.
  25. Van Schaik RHN, Van der Heiden IP, Van den Anker JN, Lindemans J. CYP3A5 variant allele frequencies in Dutch Caucasians. Clin Chem. 2002;48(10):1668–71.
  26. Balram C, Zhou Q, Cheung YB, Lee EJD. CYP3A5*3 and *6 single nucleotide polymorphisms in three distinct Asian populations. Eur J Clin Pharmacol. 2003;59:123–6.
  27. Park SY, Kang YS, Jeong MS, Yoon HK, Han KO. Frequencies of CYP3A5 genotypes and haplotypes in a Korean population. J Clin Pharm Ther. 2008;33(1):61–5.
  28. Adehin A, Bolaji OO, Kennedy MA. Polymorphisms in CYP2C8 and CYP3A5 genes in the Nigerian population. Drug Metab Pharmacokinet. 2017;32(3):189–91.
  29. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet. 2001;27(4):383–91.
  30. Semiz S, Dujić T, Ostanek B, Prnjavorac B, Bego T, Malenica M, et al. Analysis of CYP3A4*1B and CYP3A5*3 polymorphisms in population of Bosnia and Herzegovina. Med Glas (Zenica). 2011;8(1):84–9.
  31. Zeigler-Johnson C, Friebel T, Walker AH, Wang Y, Spangler E, Panossian S, et al. CYP3A4, CYP3A5, and CYP3A43 Genotypes and Haplotypes in the Etiology and Severity of Prostate Cancer. CANCER Res. 2004;64:8461–7.
  32. Miao J, Jin Y, Marunde RL, Kim S, Quinney S, Radovich M, et al. Association of genotypes of the CYP3A cluster with midazolam disposition in vivo. Pharmacogenomics J. 2009;9(5):319–26.