Tuberculous Meningitis Genetic predisposition : Understanding cellular interactions, molecular mechanisms and genetic dimensions

##plugins.themes.academic_pro.article.main##

Jean Claude Majambere
Sanae Zaidi
Abderrahmane Errami
Latifa Marih
Kamal Marhoum El Filali
Ahmed Aziz Bousfiha
Ahd Oulad Lahsen

Abstract

Tuberculous meningitis, a severe form of tuberculosis caused by Mycobacterium tuberculosis (BK), remains a major public health challenge worldwide. In addition to the complex mechanisms of the innate and adaptive immune response against Mycobacterium tuberculosis, there is a crucial genetic dimension to consider. Individuals with specific genetic variations may have altered immune responses that make them more susceptible to this form of tuberculosis. Genetic mutations in genes encoding surface receptors, adaptor proteins, kinases, transcription factors, nucleic receptors and other molecules involved in cellular interactions and molecular mechanisms have been associated with susceptibility to TB. Understanding the molecular mechanisms of immune interactions in host response to Mycobacterium tuberculosis is crucial to understanding the genetic dimension in susceptibility to tuberculosis, particularly its dreaded form of tuberculous meningitis. 


 The aim of this update is to explore in details the key interactions between the main players in innate and adaptive immunity during infection with Mycobacterium tuberculosis, with particular emphasis on the genetic factors associated with susceptibility to tuberculosis, especially its dreaded form of tuberculous meningitis

Keywords:

Genetic predisposition , Tuberculous meningitis, Mycobacterium tuberculosis, Cytokines, Surface receptors, Transcription factors, Immune response

##plugins.themes.academic_pro.article.details##

References

  1. Global Tuberculosis Report 2022 [Internet]. [cité 5 oct 2023]. Disponible sur: https://www.who.int/teams/global-tuberculosis-programme/tb-reports/global-tuberculosis-report-2022
  2. Velayati AA, Farnia P, Hoffner S. Drug-resistant Mycobacterium tuberculosis: Epidemiology and role of morphological alterations. J Glob Antimicrob Resist. mars 2018;12:192‑6.
  3. Segueni N. Etude des relations hôte-pathogène lors de l’infection par Mycobacterium tuberculosis : implication des voies de signalisation IL-36, TNF et IL-17/IL-22 [Internet] [phdthesis]. Université d’Orléans; 2015 [cité 5 oct 2023]. Disponible sur: https://theses.hal.science/tel-01406009
  4. Ravesloot-Chávez MM, Van Dis E, Stanley SA. The Innate Immune Response to Mycobacterium tuberculosis Infection. Annu Rev Immunol. 26 avr 2021;39:611‑37.
  5. Remus N, El Baghdadi J, Abel L, Casanova JL. Génétique et immunité de la tuberculose. Arch Pédiatrie. 2005;12:S74‑9.
  6. de Martino M, Lodi L, Galli L, Chiappini E. Immune Response to Mycobacterium tuberculosis: A Narrative Review. Front Pediatr [Internet]. 2019 [cité 26 sept 2023];7. Disponible sur: https://www.frontiersin.org/articles/10.3389/fped.2019.00350
  7. Casanova JL, Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell. 18 août 2022;185(17):3086‑103.
  8. Bellamy R, Beyers N, McAdam KPWJ, Ruwende C, Gie R, Samaai P, et al. Genetic susceptibility to tuberculosis in Africans: A genome-wide scan. Proc Natl Acad Sci. 5 juill 2000;97(14):8005‑9.
  9. Benbetka Y, Amrane R. Prédisposition génétique et tuberculose pulmonaire à propos de 250 cas [PhD Thesis]. 2016.
  10. Bustamante J, Boisson-Dupuis S, Abel L, Casanova JL. Mendelian susceptibility to mycobacterial disease: genetic, immunological, and clinical features of inborn errors of IFN-γ immunity. Semin Immunol. déc 2014;26(6):454‑70.
  11. Cresswell FV, Davis AG, Sharma K, Basu Roy R, Ganiem AR, Kagimu E, et al. Recent Developments in Tuberculous Meningitis Pathogenesis and Diagnostics. Wellcome Open Res. 2019;4:164.
  12. Fieschi C. [Mendelian susceptibility to mycobacterial disease: defects in the IL-12/IFNgamma pathway]. Presse Medicale Paris Fr 1983. mai 2006;35(5 Pt 2):879‑86.
  13. Biyikli OO, Baysak A, Ece G, Oz AT, Ozhan MH, Berdeli A. Role of Toll-Like Receptors in Tuberculosis Infection. Jundishapur J Microbiol. 14 sept 2016;9(10):e20224.
  14. Robert J. Les récepteurs toll-like, l’interleukine 1 et le NFκB. In: Robert J, éditeur. Signalisation cellulaire et cancer: Un manuel pour les étudiants et les oncologues [Internet]. Paris: Springer; 2010 [cité 26 sept 2023]. p. 145‑54. (Oncologie pratique). Disponible sur: https://doi.org/10.1007/978-2-8178-0028-8_13
  15. Owen AM, Luan L, Burelbach KR, McBride MA, Stothers CL, Boykin OA, et al. MyD88-dependent signaling drives toll-like receptor-induced trained immunity in macrophages. Front Immunol. 2022;13:1044662.
  16. Pereira M, Durso DF, Bryant CE, Kurt-Jones EA, Silverman N, Golenbock DT, et al. The IRAK4 scaffold integrates TLR4-driven TRIF and MYD88 signaling pathways. Cell Rep. 16 août 2022;40(7):111225.
  17. Walsh MC, Lee J, Choi Y. Tumor necrosis factor receptor- associated factor 6 (TRAF6) regulation of development, function, and homeostasis of the immune system. Immunol Rev. juill 2015;266(1):72‑92.
  18. Dorrington MG, Fraser IDC. NF-κB Signaling in Macrophages: Dynamics, Crosstalk, and Signal Integration. Front Immunol. 2019;10:705.
  19. Fortin A, Abel L, Casanova JL, Gros P. Host genetics of mycobacterial diseases in mice and men: forward genetic studies of BCG-osis and tuberculosis. Annu Rev Genomics Hum Genet. 2007;8:163‑92.
  20. Mussbacher M, Derler M, Basílio J, Schmid JA. NF-κB in monocytes and macrophages - an inflammatory master regulator in multitalented immune cells. Front Immunol. 2023;14:1134661.
  21. Kak G, Tiwari BK, Singh Y, Natarajan K. Regulation of Interferon-γ receptor (IFN-γR) expression in macrophages during Mycobacterium tuberculosis infection. Biomol Concepts. 6 avr 2020;11(1):76‑85.
  22. Jiang Q, Qiu Y, Kurland IJ, Drlica K, Subbian S, Tyagi S, et al. Glutamine Is Required for M1-like Polarization of Macrophages in Response to Mycobacterium tuberculosis Infection. mBio. 30 août 2022;13(4):e0127422.
  23. Van Dis E, Fox DM, Morrison HM, Fines DM, Babirye JP, McCann LH, et al. IFN-γ-independent control of M. tuberculosis requires CD4 T cell-derived GM-CSF and activation of HIF-1α. PLoS Pathog. juill 2022;18(7):e1010721.
  24. Liu CH, Liu H, Ge B. Innate immunity in tuberculosis: host defense vs pathogen evasion. Cell Mol Immunol. déc 2017;14(12):963‑75.
  25. Kumar J, Okada S, Clayberger C, Krensky AM. Granulysin: a novel antimicrobial. Expert Opin Investig Drugs. févr 2001;10(2):321‑9.
  26. Choreño Parra JA, Martínez Zúñiga N, Jiménez Zamudio LA, Jiménez Álvarez LA, Salinas Lara C, Zúñiga J. Memory of Natural Killer Cells: A New Chance against Mycobacterium tuberculosis? Front Immunol. 2017;8:967.
  27. Choreño-Parra JA, Jiménez-Álvarez LA, Maldonado-Díaz ED, Cárdenas G, Fernández-Lopez LA, Soto-Hernandez JL, et al. Phenotype of Peripheral NK Cells in Latent, Active, and Meningeal Tuberculosis. J Immunol Res. 2021;2021:5517856.
  28. Lu YJ, Barreira-Silva P, Boyce S, Powers J, Cavallo K, Behar SM. CD4 T cell help prevents CD8 T cell exhaustion and promotes control of Mycobacterium tuberculosis infection. Cell Rep. 14 sept 2021;36(11):109696.
  29. Brumbaugh KM, Binstadt BA, Billadeau DD, Schoon RA, Dick CJ, Ten RM, et al. Functional role for Syk tyrosine kinase in natural killer cell-mediated natural cytotoxicity. J Exp Med. 15 déc 1997;186(12):1965‑74.
  30. Chong G, MacKerell AD. Spatial requirements for ITAM signaling in an intracellular natural killer cell model membrane. Biochim Biophys Acta Gen Subj. nov 2022;1866(11):130221.
  31. Bacon CM, McVicar DW, Ortaldo JR, Rees RC, O’Shea JJ, Johnston JA. Interleukin 12 (IL-12) induces tyrosine phosphorylation of JAK2 and TYK2: differential use of Janus family tyrosine kinases by IL-2 and IL-12. J Exp Med. 1 janv 1995;181(1):399‑404.
  32. Liang C, Li S, Yuan J, Song Y, Ren W, Wang W, et al. Attenuated Cytokine-Induced Memory-Like Natural Killer Cell Responses to Mycobacterium tuberculosis in Tuberculosis Patients. Infect Drug Resist. 2023;16:2349‑64.
  33. Simonović N, Witalisz-Siepracka A, Meissl K, Lassnig C, Reichart U, Kolbe T, et al. NK Cells Require Cell-Extrinsic and -Intrinsic TYK2 for Full Functionality in Tumor Surveillance and Antibacterial Immunity. J Immunol Baltim Md 1950. 15 mars 2019;202(6):1724‑34.
  34. Feinberg J, Fieschi C, Doffinger R, Feinberg M, Leclerc T, Boisson-Dupuis S, et al. Bacillus Calmette Guerin triggers the IL-12/IFN-gamma axis by an IRAK-4- and NEMO-dependent, non-cognate interaction between monocytes, NK, and T lymphocytes. Eur J Immunol. nov 2004;34(11):3276‑84.
  35. Sawaki J, Tsutsui H, Hayashi N, Yasuda K, Akira S, Tanizawa T, et al. Type 1 cytokine/chemokine production by mouse NK cells following activation of their TLR/MyD88-mediated pathways. Int Immunol. mars 2007;19(3):311‑20.
  36. Herrmann JL, Lagrange PH. Dendritic cells and Mycobacterium tuberculosis: which is the Trojan horse? Pathol Biol. 1 janv 2005;53(1):35‑40.
  37. Abdalla H, Srinivasan L, Shah S, Mayer-Barber KD, Sher A, Sutterwala FS, et al. Mycobacterium tuberculosis infection of dendritic cells leads to partially caspase-1/11-independent IL-1β and IL-18 secretion but not to pyroptosis. PloS One. 2012;7(7):e40722.
  38. Su H, Peng B, Zhang Z, Liu Z, Zhang Z. The Mycobacterium tuberculosis glycoprotein Rv1016c protein inhibits dendritic cell maturation, and impairs Th1 /Th17 responses during mycobacteria infection. Mol Immunol. mai 2019;109:58‑70.
  39. Choi HG, Kim WS, Back YW, Kim H, Kwon KW, Kim JS, et al. Mycobacterium tuberculosis RpfE promotes simultaneous Th1- and Th17-type T-cell immunity via TLR4-dependent maturation of dendritic cells. Eur J Immunol. juill 2015;45(7):1957‑71.
  40. Khan N, Pahari S, Vidyarthi A, Aqdas M, Agrewala JN. NOD-2 and TLR-4 Signaling Reinforces the Efficacy of Dendritic Cells and Reduces the Dose of TB Drugs against Mycobacterium tuberculosis. J Innate Immun. 2016;8(3):228‑42.
  41. Kumar Das D, Zafar MA, Nanda S, Singh S, Lamba T, Bashir H, et al. Targeting dendritic cells with TLR-2 ligand-coated nanoparticles loaded with Mycobacterium tuberculosis epitope induce antituberculosis immunity. J Biol Chem. déc 2022;298(12):102596.
  42. Bernal-Fernandez G, Espinosa-Cueto P, Leyva-Meza R, Mancilla N, Mancilla R. Decreased expression of T-cell costimulatory molecule CD28 on CD4 and CD8 T cells of mexican patients with pulmonary tuberculosis. Tuberc Res Treat. 2010;2010:517547.
  43. Larson EC, Novis CL, Martins LJ, Macedo AB, Kimball KE, Bosque A, et al. Mycobacterium tuberculosis reactivates latent HIV-1 in T cells in vitro. PloS One. 2017;12(9):e0185162.
  44. Mahon RN, Sande OJ, Rojas RE, Levine AD, Harding CV, Boom WH. Mycobacterium tuberculosis ManLAM inhibits T-cell-receptor signaling by interference with ZAP-70, Lck and LAT phosphorylation. Cell Immunol. 2012;275(1‑2):98‑105.
  45. Ahmad S, Ahmed J, Khalifa EH, Khattak FA, Khan AS, Farooq SU, et al. Novel mutations in genes of the IL-12/IFN-γ axis cause susceptibility to tuberculosis. J Infect Public Health. sept 2023;16(9):1368‑78.
  46. Altare F, Casanova JL. IL-12 et IFN-γ : un axe clé de l’immunité anti-mycobactérienne chez l’homme. médecine/sciences. 1 nov 2001;17(11):1112‑9.
  47. Boisson-Dupuis S, Ramirez-Alejo N, Li Z, Patin E, Rao G, Kerner G, et al. Tuberculosis and impaired IL-23-dependent IFN-γ immunity in humans homozygous for a common TYK2 missense variant. Sci Immunol. 21 déc 2018;3(30):eaau8714.
  48. Casanova JL, Abel L. From rare disorders of immunity to common determinants of infection: Following the mechanistic thread. Cell. 18 août 2022;185(17):3086‑103.
  49. Ogishi M, Arias AA, Yang R, Han JE, Zhang P, Rinchai D, et al. Impaired IL-23-dependent induction of IFN-γ underlies mycobacterial disease in patients with inherited TYK2 deficiency. J Exp Med. 3 oct 2022;219(10):e20220094.
  50. Álvarez GI, Hernández Del Pino RE, Barbero AM, Estermann MA, Celano J, Musella RM, et al. Association of IFN-γ +874 A/T SNP and hypermethylation of the -53 CpG site with tuberculosis susceptibility. Front Cell Infect Microbiol. 19 janv 2023;13:1080100.
  51. Amiano NO, Morelli MP, Pellegrini JM, Tateosian NL, Rolandelli A, Seery V, et al. IFN-γ and IgG responses to Mycobacterium tuberculosis latency antigen Rv2626c differentiate remote from recent tuberculosis infection. Sci Rep. 4 mai 2020;10(1):7472.
  52. Ghanavi J, Farnia P, Farnia P, Velayati AA. The role of interferon-gamma and interferon-gamma receptor in tuberculosis and nontuberculous mycobacterial infections. Int J Mycobacteriology. 2021;10(4):349‑57.
  53. Khader SA, Divangahi M, Hanekom W, Hill PC, Maeurer M, Makar KW, et al. Targeting innate immunity for tuberculosis vaccination. J Clin Invest. 3 sept 2019;129(9):3482‑91.
  54. Mamishi S, Pourakbari B, Teymuri M, Rubbo PA, Tuaillon E, Keshtkar AA, et al. Diagnostic accuracy of IL-2 for the diagnosis of latent tuberculosis: a systematic review and meta-analysis. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. déc 2014;33(12):2111‑9.
  55. Liu X, Li F, Niu H, Ma L, Chen J, Zhang Y, et al. IL-2 Restores T-Cell Dysfunction Induced by Persistent Mycobacterium tuberculosis Antigen Stimulation. Front Immunol. 2019;10:2350.
  56. Yang R, Mele F, Worley L, Langlais D, Rosain J, Benhsaien I, et al. Human T-bet Governs Innate and Innate-like Adaptive IFN-γ Immunity against Mycobacteria. Cell. 23 déc 2020;183(7):1826-1847.e31.
  57. Herrera MT, Guzmán-Beltrán S, Bobadilla K, Santos-Mendoza T, Flores-Valdez MA, Gutiérrez-González LH, et al. Human Pulmonary Tuberculosis: Understanding the Immune Response in the Bronchoalveolar System. Biomolecules. 20 août 2022;12(8):1148.
  58. Mily A, Kalsum S, Loreti MG, Rekha RS, Muvva JR, Lourda M, et al. Polarization of M1 and M2 Human Monocyte-Derived Cells and Analysis with Flow Cytometry upon Mycobacterium tuberculosis Infection. J Vis Exp JoVE. 18 sept 2020;(163).
  59. Sudbury EL, Clifford V, Messina NL, Song R, Curtis N. Mycobacterium tuberculosis-specific cytokine biomarkers to differentiate active TB and LTBI: A systematic review. J Infect. déc 2020;81(6):873‑81.
  60. Behar SM. Antigen-specific CD8(+) T cells and protective immunity to tuberculosis. Adv Exp Med Biol. 2013;783:141‑63.
  61. Lewinsohn DM, Zhu L, Madison VJ, Dillon DC, Fling SP, Reed SG, et al. Classically restricted human CD8+ T lymphocytes derived from Mycobacterium tuberculosis-infected cells: definition of antigenic specificity. J Immunol Baltim Md 1950. 1 janv 2001;166(1):439‑46.
  62. Lin PL, Flynn JL. CD8 T cells and Mycobacterium tuberculosis infection. Semin Immunopathol. mai 2015;37(3):239‑49.
  63. Travar M, Petkovic M, Verhaz A. Type I, II, and III Interferons: Regulating Immunity to Mycobacterium tuberculosis Infection. Arch Immunol Ther Exp (Warsz). févr 2016;64(1):19‑31.
  64. Turner RD, Chiu C, Churchyard GJ, Esmail H, Lewinsohn DM, Gandhi NR, et al. Tuberculosis Infectiousness and Host Susceptibility. J Infect Dis. 3 nov 2017;216(suppl_6):S636‑43.
  65. Urdahl KB, Liggitt D, Bevan MJ. CD8+ T cells accumulate in the lungs of Mycobacterium tuberculosis-infected Kb-/-Db-/- mice, but provide minimal protection. J Immunol Baltim Md 1950. 15 févr 2003;170(4):1987‑94.
  66. Alame Emane AK, Guo X, Takiff HE, Liu S. Drug resistance, fitness and compensatory mutations in Mycobacterium tuberculosis. Tuberc Edinb Scotl. juill 2021;129:102091.
  67. Kalscheuer R, Palacios A, Anso I, Cifuente J, Anguita J, Jacobs WR, et al. The Mycobacterium tuberculosis capsule: a cell structure with key implications in pathogenesis. Biochem J. 18 juill 2019;476(14):1995‑2016.
  68. Banks DA, Ahlbrand SE, Hughitt VK, Shah S, Mayer-Barber KD, Vogel SN, et al. Mycobacterium tuberculosis Inhibits Autocrine Type I IFN Signaling to Increase Intracellular Survival. J Immunol Baltim Md 1950. 15 avr 2019;202(8):2348‑59.
  69. Sundararajan S, Muniyan R. Latent tuberculosis: interaction of virulence factors in Mycobacterium tuberculosis. Mol Biol Rep. août 2021;48(8):6181‑96.
  70. Ojuawo O, Allen R, Hagan G, Piracha S. Disseminated tuberculosis associated with deficient interleukin-23/tyrosine kinase 2 signalling. BMJ Case Rep. 23 août 2022;15(8):e250479.
  71. Moule MG, Cirillo JD. Mycobacterium tuberculosis Dissemination Plays a Critical Role in Pathogenesis. Front Cell Infect Microbiol. 25 févr 2020;10:65.
  72. Davis AG, Rohlwink UK, Proust A, Figaji AA, Wilkinson RJ. The pathogenesis of tuberculous meningitis. J Leukoc Biol. févr 2019;105(2):267‑80.
  73. Huynh J, Donovan J, Phu NH, Nghia HDT, Thuong NTT, Thwaites GE. Tuberculous meningitis: progress and remaining questions. Lancet Neurol. mai 2022;21(5):450‑64.
  74. Condos R, Rom WN, Liu YM, Schluger NW. Local Immune Responses Correlate with Presentation and Outcome in Tuberculosis. Am J Respir Crit Care Med. mars 1998;157(3):729‑35.
  75. Diatlova A, Linkova N, Lavrova A, Zinchenko Y, Medvedev D, Krasichkov A, et al. Molecular Markers of Early Immune Response in Tuberculosis: Prospects of Application in Predictive Medicine. Int J Mol Sci. 26 août 2023;24(17):13261.
  76. Ferluga J, Yasmin H, Al-Ahdal MN, Bhakta S, Kishore U. Natural and trained innate immunity against Mycobacterium tuberculosis. Immunobiology. mai 2020;225(3):151951.
  77. Qu HQ, Fisher-Hoch SP, McCormick JB. Molecular immunity to mycobacteria: knowledge from the mutation and phenotype spectrum analysis of Mendelian susceptibility to mycobacterial diseases. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. mai 2011;15(5):e305-313.
  78. Abel L, Fellay J, Haas DW, Schurr E, Srikrishna G, Urbanowski M, et al. Genetics of human susceptibility to active and latent tuberculosis: present knowledge and future perspectives. Lancet Infect Dis. mars 2018;18(3):e64‑75.