Les effets du variant CYP3A5*3 sur la pharmacocinétique du tacrolimus et le pronostic de transplantés rénaux tunisiens Rubrique Articles originaux

##plugins.themes.academic_pro.article.main##

Rim Charfi
Mohamed Mongi Bacha
Myriam Ben Fadhla
Khouloud Ferchichi
Hanene El Jebari
Emna Gaies
Anis Klouz
Ezzeddine Abderrahim
Fathi Ben Hamida
Taieb Ben Abdallah
Sameh Trabelsi
Yosr Gorgi
Imen Sfar

Résumé

Introduction: Le tacrolimus présente une variabilité pharmacocinétique interindividuelle et un index thérapeutique étroit. L'influence du single nucleotide polymorphism (SNP) CYP3A5 6986A>G dans cette variabilité est controversé.


Objectif: Etudier l'effet du SNP suscité sur l'aire sous la courbe du tacrolimus (ASC0-12h), les effets indésirables (EI) et la survie du greffon.


Méthodes: Des prélèvements sanguins étaient effectués chez des transplantés rénaux tunisiens pendant cinq ans, soit précocement ou tardivement après la transplantation. La concentration sanguine résiduelle (C0) et l’ASC0-12h de tacrolimus étaient mesurées. Un suivi prospectif pour établir la survie des greffons et un génotypage classique étaient effectués.


Résultats: Cinquante transplantés rénaux tunisiens recevant du tacrolimus étaient inclus dans l'étude. Un rejet aigu était observé chez huit patients et un dysfonctionnement chronique du greffon chez trois patients. Vingt et un patients (42%) présentaient des EI. Il y avait une différence significative de la C0 et l'ASC0-12h entre les porteurs du CYP3A5*1 (C0 moyenne=4 ng.mL-1; ASC0-12h=94,37 ng.h.mL-1) et les métaboliseurs lents ou porteurs du CYP3A5*3/3 (C0 moyenne=7,45 ng.mL-1 ; ASC0-12h=151,27 ng.h.mL-1) (p=0,0001;p=0,003, respectivement). Les C0 suprathérapeutiques étaient significativement plus fréquentes chez les métaboliseurs lents (CYP3A5*3/*3) (p=0,046; rapport des cote =1,3; intervalle de confiance 95% [1,12-1,66]). L'impact de ce SNP était significatif sur la C0, l'ASC0-12h, la C0/Dose et l'ASC0-12h/Dose, uniquement dans la phase tardive (p=0,01, 0,002, 0,012, et 0,003).


Conclusions: Le variant CYP3A5*3 était significativement associé à la pharmacocinétique du tacrolimus mais n'avait aucun impact sur la survie du greffon.

Mots-clés :

Effet indésirable, greffe rénale, pharmacocinétique, rejet, SNPS, tacrolimus

##plugins.themes.academic_pro.article.details##

Biographie de l'auteur

Rim Charfi, Service de pharmacologie clinique, Centre national Chalbi Belkahia de pharmacovigilance, Laboratoire de recherche en pharmacologie clinique et expérimentale (LR16SP02), Faculté de médecine de Tunis, Université de Tunis El Manar, Tunis, Tunisie

Pharmaco

Références

  1. Gomes RM, Guerra Junior AA, Lemos LL, Costa Jde O, Almeida AM, Alvares J, et al. Ten-year kidney transplant survival of cyclosporine or tacrolimus treated patients in Brazil. Expert Rev Clin Pharmacol 2016;9(7):991-9.
  2. Shrestha BM. two decades of tacrolimus in renal transplant: basic science and clinical evidences. Exp Clin Transplant 2017;15(1):1-9.
  3. Barbarino JM, Staatz CE, Venkataramanan R, Klein TE, Altman RB. Cyclosporine and tacrolimus pathways. Pharmacogenet Genomics 2013;23(10):563-85.
  4. Antignac M, Barrou B, Farinotti R, Lechat P, Urien S. Population pharmacokinetics and bioavailability of tacrolimus in kidney transplant patients. Br J Clin Pharmacol 2007;64(6):750-7.
  5. Roy JN, Lajoie J, Zijenah LS, Barama A, Poirier C, Ward BJ, et al. Cyp3A5 genetic polymorphisms in different ethnic populations. Drug Metab Dispos 2005;33(7):884-7.
  6. Crettol S, Venetz JP, Fontana M, Aubert JD, Pascual M, Eap CB. CYP3A7, CYP3A5, CYP3A4, and ABCB1 genetic polymorphisms, cyclosporine concentration, and dose requirement in transplant recipients. Ther Drug Monit 2008;30(6):689-99.
  7. Meng XG, Guo CX, Feng GQ, Zhao YC, Zhou BT, Han JL, et al. Association of CYP3A polymorphisms with the pharmacokinetics of cyclosporine A in early post-renal transplant recipients in China. Acta Pharmacol Sin 2012;33(12):1563-70.
  8. Cheng Y, Li H, Meng Y, Liu H, Yang L, Xu T, et al. Effect of CYP3A5 polymorphism on the pharmacokinetics of Tacrolimus and acute rejection in renal transplant recipients: experience at a single centre. Int J Clin Pract2015;183:16-22.
  9. Aouam K, Kolsi A, Kerkeni E, Ben Fredj N, Chaabane A, Monastiri K, et al. Influence of combined CYP3A4 and CYP3A5 single nucleotide polymorphisms on tacrolimus exposure in kidney transplant recipients: a study according to the post-transplant phase. Pharmacogenomics 2015;16(18):2045-54.
  10. Charfi R, Mzoughi K, Boughalleb M, et al. Response to clopidogrel and of the cytochrome CYP2C19 gene polymorphism. Tunis Med. 2018;96(3):209–18
  11. Wallemacq P, Armstrong VW, Brunet M, Haufroid V, Holt DW, Johnston A, et al. Opportunities to optimize Tacrolimus therapy in solid organ transplantation: report of the european consensus conference. Ther Drug Monit 2009;31(2):139-52.
  12. Haas M, Sis B, Racusen LC, Solez K, Glotz D et al. Banff 2013 meeting report: inclusion of c4dnegative antibody-mediated rejection and antibody-associated arterial lesions. Am J Transplant 2014;14:272-83.
  13. Ekberg H, Bernasconi C, Silva H, Vitko S, Hugo C, Demirbas A, et al. Calcineurin inhibitor minimization in the symphony study: observational results 3 years after transplantation. Am J Transplant 2009;9(8):1876-85.
  14. Baker RJ, Mark PB, Patel RK, Stevens KK, Palmer N. Renal association clinical practice guideline in post-operative care in the kidney transplant recipient. BMC Nephrol 2017;18(1):174-5.
  15. Schiff J, Cole E, Cantarovich M. Therapeutic monitoring of calcineurin inhibitors for the nephrologist. Clin J Am Soc Nephrol.2007;2(2):374-84.
  16. Barraclough KA, Isbel NM, Kirkpatrick CM, Lee KJ, Taylor PJ, Johnson DW, et al. Evaluation of limited sampling methods for estimation of tacrolimus exposure in adult kidney transplant recipients. Br J Clin Pharmacol2011;71(2):207-23.
  17. Marquet P. Suivi thérapeutique pharmacologique pour l'adaptation de posologie des médicaments. Therapeutic drug monitoring for dose drug adjustement Paris: Elsevier; 2004.
  18. Tsuchiya N, Satoh S, Tada H, Li Z, Ohiyama C, Sato K, et al. Influence of CYP3A5 and MDR1 (ABCB1) polymorphisms on the pharmacokinetic of tacrolimus in renal transplant recipients. Transplant 2004;78(8):1182-7.
  19. Mangray M, Vella JP. Hypertension after kidney transplant. Am J Kidney Dis 2011;57(2):331-41.
  20. Ekberg H, Bernasconi C, Noldeke J, Yussim A, Mjornstedt L, Erken U, et al. Cyclosporine, tacrolimus and sirolimus retain their distinct toxicity profiles despite low doses in the symphony study. Nephrol Dial Transplant 2010;25(6):2004-10.
  21. Krejci K, Tichy T, Bachleda P, Zadrazil J. Calcineurin inhibitor induced renal allograft nephrotoxicity. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2010;154(4):297-306.
  22. Kuehl P, Zhang J, Lin Y, Lamba J, Assem M, Schuetz J, et al. Sequence diversity in CYP3A promoters and characterization of the genetic basis of polymorphic CYP3A5 expression. Nat Genet 2001;27(4):383-91.
  23. Terrazzino S, Quaglia M, Stratta P, Canonico PL, Genazzani AA. The effect of CYP3A5 6986A>G and ABCB1 3435C>T on tacrolimus dose-adjusted trough levels and acute rejection rates in renal transplant patients: a systematic review and meta-analysis. Pharmacogenet Genomics 2012;22(8):642-5.
  24. Rojas L, Neumann I, Herrero MJ, Boso V, Reig J, Poveda JL, et al. Effect of CYP3A5*3 on kidney transplant recipients treated with tacrolimus: a systematic review and meta-analysis of observational studies. Pharmacogenomics J 2015;15(1):38-48.
  25. Lunde I, Bremer S, Midtvedt K, Mohebi B, Dahl M, Bergan S, et al. The influence of CYP3A, PPARA, and POR genetic variants on the pharmacokinetics of tacrolimus and cyclosporine in renal transplant recipients. Eur J Clin Pharmacol 2014;70(6):685-93.
  26. Jonge H, Loor H, Verbeke K, Vanrenterghem Y, Kuypers DR. In vivo CYP3A4 activity, CYP3A5 genotype, and hematocrit predict tacrolimus dose requirements and clearance in renal transplant patients. Clin Pharmacol Ther 2012;92(3):366-75.
  27. Jacobson PA, Oetting WS, Brearley AM, Leduc R, Guan W, Schladt D, et al. Novel polymorphisms associated with tacrolimus trough concentrations: results from a multicenter kidney transplant consortium. Transplant 2011;91(3):300-8.
  28. Chen L, Prasad GVR. CYP3A5 polymorphisms in renal transplant recipients: influence on Tacrolimus treatment. Pharmgenomics Pers Med 2018;11:23-33.
  29. Dai Y, Hebert MF, Isoherranen N, Davis CL, Marsh C, Shen DD, et al. Effect of CYP3A5 polymorphism on tacrolimus metabolic clearance in vitro. Drug Metab Dispos. 2006;34(5):836-47.
  30. Li JL, Liu S, Fu Q, Zhang Y, Wang XD, Liu XM, et al. Interactive effects of CYP3A4, CYP3A5, MDR1 AND NR1I2 polymorphisms on tracrolimus trough concentrations in early postrenal transplant recipients. Pharmacogenomics 2015;16(12):1355-65.
  31. Niioka T, Kagaya H, Saito M, Inoue T, Numakura K, Habuchi T, et al. Capability of utilizing CYP3A5 polymorphisms to predict therapeutic dosage of tacrolimus at early stage post-renal transplantation. Int J Mol Sci 2015;16(1):1840-54.
  32. Kuypers DR, Jonge H, Naesens M, Lerut E, Verbeke K, Vanrenterghem Y. CYP3A5 and CYP3A4 but not MDR1 single-nucleotide polymorphisms determine long-term tacrolimus disposition and drug-related nephrotoxicity in renal recipients. Clin Pharmacol Ther 2007;82(6):711-25.
  33. Tang HL, Xie HG, Yao Y, Hu YF. Lower tacrolimus daily dose requirements and acute rejection rates in the CYP3A5 nonexpressers than expressers. Pharmacogenet Genomics 2011;21(11):713-20.
  34. Jain AB, Venkataramanan R, Cadoff E, Fung JJ, Todo S, Krajack A, et al. Effect of hepatic dysfunction and tube clamping on FK506 pharmacokinetics and trough concentrations. Transplant Proc 1990;22(1):57-9.
  35. Zuo XC, Ng CM, Barrett JS, Luo AJ, Zhang BK, Deng CH, et al. Effects of CYP3A4 and CYP3A5 polymorphisms on tacrolimus pharmacokinetics in chinese adult renal transplant recipients: a population pharmacokinetic analysis. Pharmacogenet Genomics 2013;23(5):251-61.
  36. Glowacki F, Lionet A, Buob D, Labalette M, Allorge D, Provot F, et al. CYP3A5 and ABCB1 polymorphisms in donor and recipient: impact on tacrolimus dose requirements and clinical outcome after renal transplantation. Nephrol Dial Transplant. 2011;26(9):3046-50.
  37. Gervasini G, Garcia M, Macias RM, Cubero JJ, Caravaca F, Benitez J. Impact of genetic polymorphisms on Tacrolimus pharmacokinetics and the clinical outcome of renal transplantation. Transpl Int. 2012;25(4):471-80.
  38. Gelder T, Hesselink DA. Dosing tacrolimus based on CYP3A5 genotype: will it improve clinical outcome? Clin Pharmacol Ther 2010;87(6):640-1.
  39. Flahault A, Anglicheau D, Loriot MA, Thervet E, Pallet N. Clinical impact of the CYP3A5 6986A>G allelic variant on kidney transplantation outcomes. Pharmacogenomics. 2017;18(2):165-73.
  40. Qiu XY, Jiao Z, Zhang M, Zhong LJ, Liang HQ, Ma CL, et al. Association of MDR1, CYP3A4*18B, and CYP3A5*3 polymorphisms with cyclosporine pharmacokinetics in chinese renal transplant recipients. Eur J Clin Pharmacol. 2008;64(11):1069-84.
  41. Macphee IA, Fredericks S, Tai T, Syrris P, Carter ND, Johnston A, et al. The influence of pharmacogenetics on the time to achieve target tacrolimus concentrations after kidney transplantation. Am J Transplant 2004;4(6):914-9.
  42. Satoh S, Saito M, Inoue T, Kagaya H, Miura M, Inoue K, et al. CYP3A5*1 allele associated with tacrolimus trough concentrations but not subclinical acute rejection or chronic allograft nephropathy in japanese renal transplant recipients. Eur J Clin Pharmacol 2009;65(5):473-81.
  43. Birdwell KA, Decker B, Barbarino JM, Peterson JF, Stein CM, Sadee W, et al. Clinical pharmacogenetics implementation consortium guidelines for cyp3A5 genotype and tacrolimus dosing. Clin Pharmacol Ther. 2015;98(1):19-24.