SMAD3, Cell proliferation and lymph nodes metastasis in breast cancer hormone-dependent


Mohamed Oueslati
Meriam Beldi
Yasmine Houman
Mehdi Somai
Fatma Boussema
Monia Cheour


Background: Tumor Growth Factor-β (TGF-β) is a multifunctional cytokine that plays a crucial role in various biological processes. TGF-β is
also involved in various pathologies including breast cancer (BC). BC is strongly dependent on hormone receptors such as Estrogen receptors
(ERa, ERb) and Progesterone Receptor (PR).
Aim: To audit the potential cross-talk between TGF-β and the molecular distribution of hormone receptors (ERs and PR).
Methods: The current study analyzes the expression patterns of SMAD3, ERα, ERβ and PR in 40 breast tumor tissues using qRT-PCR.
Furthermore, the Ki-67 and HER2/neu status have been detected by Immunohistochemistry.
Results: Our results show a decrease in the SMAD3 expression in 27 of the 40 cases while its expression is increased in the remaining 13
cases (p=0.003). The over-expression of SMAD3 is associated with high tumor grades. Moreover, there is a significant positive correlation
between SMAD3+ with a high proliferative index and metastases (p=0.001 and p=0.01respectevely). The SMAD3 expression relative to (ERα,
ERβ) subgroups shows a significant association of SMAD3+ with the (ERα+, ERβ+) subgroups (p=0.009). The same is true for PR, our results
show a significant association of SMAD3+ with PR+ (p=0.02). Moreover, analysis of the expression of molecular subgroups (SMAD3+, ERα+,
ERβ+) and (SMAD3+, PR+) compared to clinical and pathological information shows a significant association with high grade tumors, a high
proliferation index (p=0.02, p= 0.01 respectively) and lymph node infiltration.
Conclusion: It is concluded that SMAD3 can promote cell proliferation and metastases in (ERα+, ERβ+) and PR+ breast cancer.


Breast cancer, SMAD3, Estrogen Receptors, Progesterone Receptor, KI-67, metastases



  1. (1) Steffensen C, Bak AM, Rubeck KZ & Jørgensen JO. Epidemiology of Cushing’s syndrome. Neuroendocrinology 2010; 92 (Suppl 1): 1–5.
  2. (2) Indholm J, Juul S, Jørgensen JO, Astrup J, Bjerre P, Feldt-Rasmussen U, Hagen C, Jørgensen J, Kosteljanetz M, Kristensen Let al. Incidence and late prognosis of Cushing’s syndrome: a population-based study. Journal of Clinical Endocrinology and Metabolism 2001; 86: 117–123.
  3. (3) Arnardo ́ttir S & Sigurjonsdo ́ttir HA. The incidence and prevalence of Cushing’s disease may be higher than previously thought: results from a retrospective study in Iceland 1955 through 2009. Clinical Endocrinology 2011; 74: 792–793.
  4. (4) R.N.Clayton .Mortality in Cushing’s Disease. Neuroendocrinology 2010; 92(suppl 1):71–76.
  5. (5) Leah T. Braun, German Rubinstein, Stephanie Zopp, Frederick Vogel, Christine Schmid-Tannwald, Montserrat Pazos Escudero et al. Recurrence after pituitary surgery in adult Cushing’s disease: a systematic review on diagnosis and treatment. Endocrine 2020; 70:218–231.
  6. (6) Shimon I, Ram Z, Cohen ZR, Hadani M. Transsphenoidal surgery for Cushing's disease: endocrinological follow-up monitoring of 82 patients. Neurosurgery 2002; 51(1):57–61.
  7. (7) Krystallenia I, Alexandraki, Gregory A Kaltsas, Andrea M Isidori, Helen L Storr, Farhad Afshar, Ian Sabin et al. Long-term remission and recurrence rates in Cushing’s disease: predictive factors in a single-centre study. European Journal of Endocrinology 2013; 168 :639–648
  8. (8) Toms GC, McCarthy MI, Niven MJ, Orteu CH, King TT & Monson JP. Predicting relapse after transsphenoidal surgery for Cushing’s disease. Journal of Clinical Endocrinology and Metabolism 1993; 76: 291–294.
  9. (9) S. Petersenn, A. Beckers, D. Ferone, A. van der Lely, J. Bollerslev, M. Boscaro et al. Therapy of endocrine disease: outcomes in patients with Cushing’s disease undergoing transsphenoidal surgery: systematic review assessing criteria used to define remission and recurrence. Eur J Endocrinol 2015; 172(6): 227–239.
  10. (10) D. Bochicchio, M. Losa, M. Buchfelder. Factors influencing the immediate and late outcome of Cushing’s disease treated by transsphenoidal surgery: a retrospective study by the European Cushing’s Disease Survey Group. J. Clin. Endocrinol. Metab. 1995; 80 (11): 3114–3120.
  11. (11) M. Fleseriu, A.H. Hamrahian, A.R. Hoffman, D.F. Kelly, L.Katznelson, American association of clinical endocrinologists and American college of endocrinology disease state clinical review: diagnosis of recurrence in Cushing disease. Endocr. Pract. 2016; 22(12): 1436–1448.
  12. (12) J.R. Lindsay, E.H. Oldfield, C.A. Stratakis, L.K. Nieman, The postoperative basal cortisol and CRH tests for prediction of longterm remission from Cushing’s disease after transsphenoidal surgery. J. Clin. Endocrinol. Metab. 2011; 96(7): 2057–2064.
  13. (13) N. Ironside, G. Chatain, D. Asuzu, S. Benzo, M. Lodish, S. Sharma, L. Nieman, C.A. Stratakis, R.R. Lonser, P. Chittiboina. Earlier post-operative hypocortisolemia may predict durable remission from Cushing’s disease. Eur. J. Endocrinol. 2018; 178(3): 255–263.
  14. (14) M. Mayberg, S. Reintjes, A. Patel, K. Moloney, J. Mercado, A. Carlson, J. Scanlan, F. Broyles, Dynamics of postoperative serum cortisol after transsphenoidal surgery for Cushing’s disease: implications for immediate reoperation and remission. J. Neurosurg. 2018; 129(5): 1268–1277.
  15. (15) Y. Liu, X. Liu, X. Hong, P. Liu, X. Bao, Y. Yao, B. Xing, Y. Li, Y. Huang, H. Zhu, L. Lu, R. Wang, M. Feng. Prediction of recurrence after transsphenoidal surgery for cushing’s disease: the use of machine learning algorithms. Neuroendocrinology 2019; 108 (3): 201–210.
  16. (16) J. Ramm-Pettersen, H. Halvorsen, J.A. Evang, P. Rønning, P.K. Hol, J. Bollerslev, J. Berg-Johnsen, E. Helseth. Low immediate postoperative serum-cortisol nadir predicts the short-term, but not long-term, remission after pituitary surgery for Cushing’s disease. BMC Endocr. Disord. 2015; 15: 62.
  17. (17) L.B. Yap, H.E. Turner, C.B. Adams, J.A. Wass. Undetectable postoperative cortisol does not always predict long-term remission in Cushing’s disease: a single centre audit. Clin. Endocrinol. 2002; 56(1): 25–31.
  18. (18) A.M. Pereira, M.O. van Aken, H. van Dulken, P.J. Schutte, N.R. Biermasz, J.W. Smit, F. Roelfsema, J.A. Romijn. Long-term predictive value of postsurgical cortisol concentrations for cure and risk of recurrence in Cushing’s disease. J. Clin. Endocrinol. Metab. 2003 ; 88(12): 5858–5864.
  19. (19) C. Brichard, E. Costa, E. Fomekong, D. Maiter, C. Raftopoulos, Outcome of transsphenoidal surgery for cushing disease: a single-center experience over 20 Years. World Neurosurg 2018 ; 119 : e106–e117
  20. (20) A.M. Abu Dabrh, N.M. Singh Ospina, A. Al Nofal, W.H. Farah, P. Barrionuevo, M. Sarigianni, et al. Predictors of biochemical remission and recurrence after surgical and radiation treatments of Cushing disease: a systematic review and meta-analysis. Endocr. Pract 2016 ; 22 (4) : 466–475.
  21. (21) C.-H. Kuo, S.-R. Shih, H.-Y. Li, S.-C. Chen, P.-J. Hung, F.-Y. Tseng, T.-C. Chang. Adrenocorticotropic hormone levels before treatment predict recurrence of Cushing’s disease. J. Formos Med. Assoc. 2017 ; 116(6) : 441–447.
  22. (22) Langlois, F.; Lim, D.S.T.; Yedinak, C.G.; Cetas, I.; McCartney, S.; Cetas, J.; Dogan, A.; Fleseriu, M. Predictors of silent corticotroph adenoma recurrence; a large retrospective single center study and systematic literature review. Pituitary 2017 ; 21 : 32–40.
  23. (23) Prognostic Factors for Recurrence in Pituitary Adenomas: Recent Progress and Future Directions. Diagnostics (Basel) 2022 ; 12 : 977.