How to interpret parameters of routine lung function tests in 2023?

##plugins.themes.academic_pro.article.main##

Fatma Guezguez
Inès Ghannouchi
Amani Sayhi
Emna Charfedi
Arwa Yahyaoui
Sonia Rouatbi
Helmi Ben Saad

Abstract

The diagnosis and management of the most prevalent chronic respiratory diseases partially rely on parameters obtained from pulmonary functional tests (PFTs), including spirometry, plethysmography, and carbon monoxide diffusion capacity (DLCO) measurement. In practice, the interpretation of PFTs’ parameters is based on international recommendations issued by renowned scientific societies such as the American Thoracic Society (ATS) and the European Respiratory Society (ERS). The interpretation standards for PFTs established by ATS/ERS in 2005 were updated in 2022. According to the ATS/ERS-2022 standards, the interpretation of PFTs can be summarized in five steps. The first step involves comparing the determined parameters with those observed in a reference population of healthy individuals. This step helps determine whether the determined parameters are low, normal, or elevated. The second step aims to identify potential ventilatory impairments, such as obstructive and/or restrictive ventilatory impairments, which can be observed in certain chronic respiratory or extrarespiratory diseases. The third step involves assessing the severity of the identified ventilatory impairment or the decrease in DLCO. The fourth step entails evaluating the response to bronchodilator testing, if performed. Finally, if previous PFTs results are available, it is important to identify significant changes in certain PFTs parameters over time by comparing current and previous results. This clinical practice guide provides a comprehensive synthesis of the different steps in PFTs interpretation, taking into account the recommendations from ATS/ERS-2022.

Keywords:

Algorithm, Asthma, COPD, PFT, Interpretation, Scientific societies, FEV1Q, z-score

##plugins.themes.academic_pro.article.details##

Author Biographies

Fatma Guezguez, 1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie 2Laboratoire de physiologie. Faculté de Médecine de Sousse. Université de Sousse. Sousse. Tunisie 3Laboratoire de recherche “Insuffisance Cardiaque, LR12SP09”, EPS Farhat HACHED, Sousse, Tunisie

1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie

2Laboratoire de physiologie. Faculté de Médecine de Sousse. Université de Sousse. Sousse. Tunisie

3Laboratoire de recherche “Insuffisance Cardiaque, LR12SP09”, EPS Farhat HACHED, Sousse, Tunisie

Inès Ghannouchi, 1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie 2Laboratoire de physiologie. Faculté de Médecine de Sousse. Université de Sousse. Sousse. Tunisie 3Laboratoire de recherche “Insuffisance Cardiaque, LR12SP09”, EPS Farhat HACHED, Sousse, Tunisie

1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie

2Laboratoire de physiologie. Faculté de Médecine de Sousse. Université de Sousse. Sousse. Tunisie

3Laboratoire de recherche “Insuffisance Cardiaque, LR12SP09”, EPS Farhat HACHED, Sousse, Tunisie

Amani Sayhi, 1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie 2Laboratoire de physiologie. Faculté de Médecine de Sousse. Université de Sousse. Sousse. Tunisie 3Laboratoire de recherche “Insuffisance Cardiaque, LR12SP09”, EPS Farhat HACHED, Sousse, Tunisie

1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie

2Laboratoire de physiologie. Faculté de Médecine de Sousse. Université de Sousse. Sousse. Tunisie

3Laboratoire de recherche “Insuffisance Cardiaque, LR12SP09”, EPS Farhat HACHED, Sousse, Tunisie

Emna Charfedi, 1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie

1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie

Arwa Yahyaoui, 1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie

1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie

Sonia Rouatbi, 1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie 2Laboratoire de physiologie. Faculté de Médecine de Sousse. Université de Sousse. Sousse. Tunisie 3Laboratoire de recherche “Insuffisance Cardiaque, LR12SP09”, EPS Farhat HACHED, Sousse, Tunisie

1Service de physiologie et explorations fonctionnelles. EPS Farhat HACHED. Sousse. Tunisie

2Laboratoire de physiologie. Faculté de Médecine de Sousse. Université de Sousse. Sousse. Tunisie

3Laboratoire de recherche “Insuffisance Cardiaque, LR12SP09”, EPS Farhat HACHED, Sousse, Tunisie

Helmi Ben Saad, University of Sousse, Faculty of Medicine of Sousse

  • Professor of Physiology and Functional Explorations at the Faculty of Medicine of Sousse - Tunisia, Department of Physiology and Functional Explorations at EPS Farhat HACHED - Sousse - Tunisia.
  • President of the College of Physiology and Functional Explorations (terms: 2014-2017; 2021-2023).
  • Master's degree in Biological and Medical Sciences from the University of Montpellier I, France.
  • World expert in spirometry (ranked 1st in Africa): https://expertscape.com/ex/spirometry/c/afr.
  • Diploma of Advanced Studies in "Human Movement Sciences" from the University of Montpellier I, France.
  • Interuniversity Diploma "Pathophysiology of Exercise and Functional Exercise Explorations" from the University of Montpellier 1, France.
  • International PhD in Sciences between the Universities of Montpellier I (France) and Monastir (Tunisia).
  • European Spirometry Driving License Part 1 (theory only) and the European Spirometry Training Program (Part 2: knowledge and competence in practice) and the European Spirometry train-the-trainer course.
  • Invited speaker at numerous international congresses on respiratory functional explorations.
  • Author of over 220 scientific articles in indexed and impact factor journals.
  • Potential reviewer for over 80 indexed and impact factor journals and potential external reviewer for the University of Cape Town (South Africa) and Mutah (Jordan).
  • Winner of the Sadok BESROUR Award for Excellence in Medical Research (2021).
  • Web:
  1. http://scholar.google.fr/citations?hl=fr&user=oeV_0OwAAAAJ&view_op=list_works&sortby=pubdatehttp://www.researchgate.net/profile/Helmi_Ben_Saad
  2. https://publons.com/author/602231/helmi-ben-saad#profile
  3. https://www.researchgate.net/profile/Helmi_Ben_Saad

References

  1. GBD Chronic Respiratory Disease Collaborators. Prevalence and attributable health burden of chronic respiratory diseases, 1990-2017: a systematic analysis for the global burden of disease study 2017. Lancet Respir Med. 2020;8(6):585-96.
  2. Agustí A, Celli BR, Criner GJ, Halpin D, Anzueto A, Barnes P, et al. Global initiative for chronic obstructive lung disease 2023 report: GOLD executive summary. Eur Respir J. 2023;61(4):2300239.
  3. GINA. Global strategy for asthma management and prevention 2023. Téléchargeable via ce lien: https://www.ginasthma.org/reports (Dernière visite: 2 Juin 2023).
  4. Stanojevic S, Kaminsky DA, Miller MR, Thompson B, Aliverti A, Barjaktarevic I, et al. ERS/ATS technical standard on interpretive strategies for routine lung function tests. Eur Respir J. 2022;60(1):2101499
  5. Pellegrino R, Viegi G, Brusasco V, Crapo RO, Burgos F, Casaburi R, et al. Stratégies d’interprétation des explorations fonctionnelles respiratoires. Rev Mal Respir. 2007;24(3):83-108.
  6. Ben Saad H. Interpretation of respiratory functional explorations of deficiency and incapacity in adult. Tunis Med. 2020;98(11):797-815.
  7. Kammoun R, Ben Saad H. From deficiency to handicap in the respiratory field: lung function tests (LFT) norms and quality of life (QOL) questionnaires validated for the Tunisian population. Tunis Med. 2020;98(5):378-95.
  8. Graham BL, Steenbruggen I, Miller MR, Barjaktarevic IZ, Cooper BG, Hall GL, et al. Standardization of spirometry 2019 Update. An official American thoracic society and European respiratory society technical statement. Am J Respir Crit Care Med. 2019;200(8):e70-e88.
  9. Wanger J, Clausen JL, Coates A, Pedersen OF, Brusasco V, Burgos F, et al. Standardisation de la mesure des volumes pulmonaires. Rev Mal Respir. 2007;24(3):51-64.
  10. Graham BL, Brusasco V, Burgos F, Cooper BG, Jensen R, Kendrick A, et al. 2017 ERS/ATS standards for single-breath carbon monoxide uptake in the lung. Eur Respir J. 2017;49(1):1600016.
  11. Culver BH, Graham BL, Coates AL, Wanger J, Berry CE, Clarke PK, et al. Recommendations for a standardized pulmonary function report. An official American thoracic society technical statement. Am J Respir Crit Care Med. 2017;196(11):1463-72.
  12. Miller MR, Hankinson J, Brusasco V, Burgo F, Casaburi R, Coates A, et al. Standardisation de la spirométrie. Rev mal Respir. 2007;24(3):27-49.
  13. MacIntyre N, Crapo RO, Viegi G, Johnson DC, Van Der Grinten CPM, Brusasco V, et al. Standardisation de la détermination de la diffusion du monoxyde de carbone par la méthode en apnée. Rev mal Respir. 2007;24(3):65-82.
  14. Quanjer PH, Stanojevic S, Cole TJ, Baur X, Hall GL, Culver BH, et al. Multi-ethnic reference values for spirometry for the 3-95-yr age range: the global lung function 2012 equations. Eur Respir J. 2012;40(6):1324-43.
  15. Stanojevic S, Graham BL, Cooper BG, Thompson BR, Carter KW, Francis RW, et al. Official ERS technical standards: Global lung function initiative reference values for the carbon monoxide transfer factor for Caucasians. Eur Respir J. 2017;50(3):1700010
  16. Hall GL, Filipow N, Ruppel G, Okitika T, Thompson B, Kirkby J, et al. Official ERS technical standard: Global lung function initiative reference values for static lung volumes in individuals of European ancestry. Eur Respir J. 2021;57(3).
  17. Cooper BG, Stocks J, Hall GL, Culver B, Steenbruggen I, Carter KW, et al. The global lung function initiative (GLI) network: bringing the world's respiratory reference values together. Breathe. 2017;13(3):e56-e64.
  18. Neder JA. The new ERS/ATS standards on lung function test interpretation: some extant limitations. Eur Respir J. 2022;60(2).
  19. Ben Salah N, Bejar D, Snene H, Ouahchi Y, Mehiri N, Louzir B. The Z-score: A new tool in the interpretation of spirometric data. Tunis Med. 2017;95(8-9):767-71.
  20. Ben Saad H. Review of the current use of global lung function initiative norms for spirometry (GLI-2012) and static lung volumes (GLI-2021) in Great Arab Maghreb (GAM) countries and steps required to improve their utilization. Libyan J Med. 2022;17(1):2031596.
  21. Bhatt SP, Bhakta NR, Wilson CG, Cooper CB, Barjaktarevic I, Bodduluri S, et al. New spirometry indices for detecting mild airflow obstruction. Sci Rep. 2018;8(1):17484.
  22. Zimmermann SC, Tonga KO, Thamrin C. Dismantling airway disease with the use of new pulmonary function indices. Eur Respir Rev. 2019;28(151).
  23. Dos Santos Andreata L, Soares MR, Pereira CA. Reduced FEV(1)/FVC and FEV(1) in the normal range as a physiological variant. Respir Care. 2019;64(5):570-5.
  24. Peralta GP, Abellan A, Montazeri P, Basterrechea M, Esplugues A, Gonzalez-Palacios S, et al. Early childhood growth is associated with lung function at 7 years: a prospective population-based study. Eur Respir J. 2020;56(6):2000157
  25. Arismendi E, Bantula M, Perpina M, Picado C. Effects of obesity and asthma on lung function and airway dysanapsis in adults and children. J Clin Med. 2020;9(11):3762
  26. Forno E, Weiner DJ, Mullen J, Sawicki G, Kurland G, Han YY, et al. Obesity and airway dysanapsis in children with and without asthma. Am J Respir Crit Care Med. 2017;195(3):314-23.
  27. Bokov P, Delclaux C. Interpretation and use of routine pulmonary function tests: Spirometry, static lung volumes, lung diffusion, arterial blood gas, methacholine challenge test and 6-minute walk test. Rev Med Interne. 2016;37(2):100-10.
  28. Aaron SD, Dales RE, Cardinal P. How accurate is spirometry at predicting restrictive pulmonary impairment? Chest. 1999;115(3):869-73.
  29. Clay RD, Iyer VN, Reddy DR, Siontis B, Scanlon PD. The "complex restrictive" pulmonary function pattern: Clinical and radiologic analysis of a common but previously undescribed restrictive pattern. Chest. 2017;152(6):1258-65.
  30. Hyatt RE, Cowl CT, Bjoraker JA, Scanlon PD. Conditions associated with an abnormal nonspecific pattern of pulmonary function tests. Chest. 2009;135(2):419-24.
  31. Diaz-Guzman E, McCarthy K, Siu A, Stoller JK. Frequency and causes of combined obstruction and restriction identified in pulmonary function tests in adults. Respir Care. 2010;55(3):310-6.
  32. Higbee DH, Granell R, Davey Smith G, Dodd JW. Prevalence, risk factors, and clinical implications of preserved ratio impaired spirometry: a UK Biobank cohort analysis. Lancet Respir Med. 2022;10(2):149-57.
  33. Wan ES, Balte P, Schwartz JE, Bhatt SP, Cassano PA, Couper D, et al. Association between preserved ratio impaired spirometry and clinical outcomes in us adults. JAMA. 2021;326(22):2287-98.
  34. Zhao N, Wu F, Peng J, Zheng Y, Tian H, Yang H, et al. Preserved ratio impaired spirometry is associated with small airway dysfunction and reduced total lung capacity. Respir Res. 2022;23(1):298.
  35. Chan ED, Irvin CG. The detection of collapsible airways contributing to airflow limitation. Chest. 1995;107(3):856-9.
  36. Iyer VN, Schroeder DR, Parker KO, Hyatt RE, Scanlon PD. The nonspecific pulmonary function test: longitudinal follow-up and outcomes. Chest. 2011;139(4):878-86.
  37. Redlich CA, Tarlo SM, Hankinson JL, Townsend MC, Eschenbacher WL, Von Essen SG, et al. Official American thoracic society technical standards: spirometry in the occupational setting. Am J Respir Crit Care Med. 2014;189(8):983-93.
  38. Miller MR, Pedersen OF. New concepts for expressing forced expiratory volume in 1 s arising from survival analysis. Eur Respir J. 2010;35(4):873-82.
  39. Anane I, Guezguez F, Knaz H, Ben Saad H. How to stage airflow limitation in stable chronic obstructive pulmonary disease male patients? Am J Mens Health. 2020;14(3):1557988320922630.
  40. Ben Saad H. In 2023, it is vital to standardize the interpretation of spirometry in children. Pediatr Pulmonol. 2023;58(8):2187-2188.
  41. Ben Saad H. It is high time we standardize the interpretation of bronchodilator responsiveness in children. Pediatr Pulmonol. 2021;56(5):1264-5.
  42. Guezguez F, Ben Saad H. What constitutes a "clinically significant" bronchodilator response in children? Eur Respir J. 2020;55(5).
  43. Guezguez F, Knaz H, Anane I, Bougrida M, Ben Saad H. The ‘clinically significant’bronchodilator responsiveness (BDR) in children: a comparative study between six definitions of scholarly societies and a mini-review. Expert Rev Respir Med 2021;15(6):823-32.
  44. Saad HB. It is high time for the scholarly societies to standardize the bronchodilator responsiveness in children. Allergol Immunopathol (Madr). 2021;49(2):225-7.
  45. Stanojevic S, Filipow N, Ratjen F. Paediatric reproducibility limits for the forced expiratory volume in 1 s. Thorax. 2020;75(10):891-6.
  46. Ben Saad H. Deterioration of FEV1 in primary ciliary dyskinesia: what about the conditional change score? Pediatr Pulmonol. 2023;1-3. DOI:10.1002/ppul.26637.
  47. Das N, Happaerts S, Gyselinck I, Staes M, Derom E, Brusselle G, et al. Collaboration between explainable artificial intelligence and pulmonologists improves the accuracy of pulmonary function test interpretation. Eur Respir J. 2023;61(5):2201720