Monogenic urinary lithiasis in Tunisian children: 25 years’ experience of a referral center

##plugins.themes.academic_pro.article.main##

Abir Boussetta
Amina Karray
Nesrine Abida
Manel Jellouli
Tahar Gargah

Abstract

Objective: To describe the clinical, biochemical and evolutive profile of monogenic urinary lithiasis in Tunisian children followed up in a reference service,
during a 25 years period.

Methods: This was a single-center retrospective observational study of children with urolithiasis, conducted in the pediatric nephrology department in
Charles Nicolle Hospital, Tunis, Tunisia over 25 years (January 1st, 1996 to December 31, 2020). Children≤18 of age with urolithiasis with or without
nephrocalcinosis related to a monogenic disease were included in our study.

Results: A total of 66 children were included in our study. Patients were 5.92±3.48 years of age at the time of urolithiasis diagnosis, and 5.33±3.66 years
of age at the time of the underlying pathology diagnosis. The inherited urolithiasis disorders found in our series were: primary hyperoxaluria in 44 cases,
cystinuria in 9 cases, Lesch Nyhan syndrome in 5 cases. Renal tubular acidosis was found in 3 cases, and hereditary xanthinuria in 2 cases. Bartter
syndrome, adenine phosphoribosyltransferase deficiency and Hereditary hypophosphatemic rickets with hypercalciuria were found in 1 case each. After
an average follow-up of 6.45±3.79 years, six patients were in end-stage renal disease. Three patients had died, all of them being followed for primary
hyperoxaluria type 1.

Conclusions: Monogenic urinary lithiasis, although rare, are most likely under-diagnosed in countries with high consanguinity such as Tunisia. The
screening of these diseases seems to be of primary importance because of their significant morbidity.


##plugins.themes.academic_pro.article.details##

References

  1. Sorokin I, Mamoulakis C, Miyazawa K, Rodgers A, Talati J, Lotan Y. Epidemiology of stone disease across the world. World J Urol. 2017;35(9):1301-1320.
  2. Panzarino V. Urolithiasis in Children. Adv Pediatr. 2020;67:105-112..
  3. Vieira MS, Francisco PC, Hallal ALLC, Penido MGMG, Bresolin NL. Association between dietary pattern and metabolic disorders in children and adolescents with urolithiasis. J Pediatr (Rio J). 2020;96(3):333-340.
  4. Miah T, Kamat D. Pediatric Nephrolithiasis: A Review. Pediatr Ann. 2017;46(6):e242-e244.
  5. Schwartz GJ, Muñoz A, Schneider MF, Mak RH, Kaskel F, Warady BA, et al. New equations to estimate GFR in children with CKD. J Am Soc Nephrol. 2009;20(3):629-37.
  6. Stevens PE, Levin A; Kidney Disease: Improving Global Outcomes Chronic Kidney Disease Guideline Development Work Group Members. Evaluation and management of chronic kidney disease: synopsis of the kidney disease: improving global outcomes 2012 clinical practice guideline. Ann Intern Med. 2013;158(11):825-30.
  7. Chimenz R, Cannavò L, Viola V, Di Benedetto V, Scuderi MG, Pensabene L, et al. Pediatric urolithiasis. J Biol Regul Homeost Agents. 2019;33(5):39-44.
  8. Imran K, Zafar MN, Ozair U, Khan S, Rizvi SAH. Metabolic risk factors in pediatric stone formers: a report from an emerging economy. Urolithiasis. 2017;45(4):379-386.
  9. Kaaroud H, Harzallah A, Sayhi M, Bacha M, Khadhar M, Goucha R, et al. Lithiase urinaire héréditaire : expérience d’un service de néphrologie. Prog Urol. 2019;29(16):962-73.
  10. Ge YC, Zhan RC, Wang L, Ning C, Du Y, Li J, et al. Characteristics of genotype of monogenic nephrolithiasis in Chinese pediatric patients with nephrolithiasis. Zhonghua Yi Xue Za Zhi. 2021;101(38):3115-20.
  11. Medairos R, Paloian NJ, Pan A, Moyer A, Ellison JS. Risk factors for subsequent stone events in pediatric nephrolithiasis: A multiinstitutional analysis. J Pediatr Urol. 2021;S1477-5131(21)00568-4.
  12. Amar A, Majmundar AJ, Ullah I, Afzal A, Braun DA, Shril S, et al. Gene panel sequencing identifies a likely monogenic cause in 7% of 235 Pakistani families with nephrolithiasis. Hum Genet. 2019;138(3):211-219.
  13. Kamoun A, Zghal A, Daudon M, Ben Ammar S, Zerelli L, Abdelmoula J, et al. La lithiase urinaire de l’enfant: contributions de l’anamnèse, de l’exploration biologique et de l’analyse physique des calculs au diagnostic étiologique. Arch Pediatr. 1997;4(7):629-38.
  14. Cogal AG, Arroyo J, Shah RJ, Reese KJ, Walton BN, Reynolds LM, et al. Investigators of the rare kidney stone consortium. Comprehensive genetic analysis reveals complexity of monogenic urinary stone disease. Kidney Int Rep. 2021;6(11):2862-84.
  15. Chemli J, Abdennabi H, Zorgati M, Abdelhak S, Nabli N, Abroug S, et al. Hyperoxalurie primaire chez les enfants en Tunisie centrale. Tunis Med. 2007; 85:513-18.
  16. Benhaj Mbarek I, Abroug S, Omezzine A, Zellama D, Achour A, Harbi A. Selected AGXT gene mutations analysis provides a genetic diagnosis in 28% of Tunisian patients with primary hyperoxaluria. BMC Nephrol. 2011;12:25.
  17. Gargah T, Khelil N, Gharbi Y, Karoui W, Trabelsi M, Rajhi H, et al. Hyperoxalurie primaire de type 1 chez l’enfant Tunisien. Tunis Med. 2011;89(2)163-7.
  18. Al Riyami MS, Al Ghaythi B, Al Hachmi N, Al Kalbani N. Primary Hyperoxaluria type 1 in 18 children: genotyping and outcome. Int J Nephrol. 2015;2015;634175.
  19. Soliman NA, Nabhan MM, Abdelrahman SM, Abdelaziz H, Helmi R, Ghanim K, et al. Clinical spectrum of primary hyperoxaluria type 1: Experience of a tertiary center. Nephrol Ther. 2017;13(3):176-82.
  20. M’dimegh S, Omezzine A, M’barek I, Moussa A, Mabrouk S, et al. Mutational Analysis of AGXT in Tunisian Population with Primary Hyperoxaluria Type 1. Ann Hum Genet. 2017;81(1):1-10.
  21. Du DF, Li QQ, Chen C, Shi SM, Zhao YY, Jiang JP, et al. Updated Genetic Testing of Primary Hyperoxaluria Type 1 in a Chinese Population: Results from a Single Center Study and a Systematic Review. 2018;38(5):749-57.
  22. Lawrence JE, Wattenberg DJ. Primary Hyperoxaluria: The Patient and Caregiver Perspective. Clin J Am Soc Nephrol. 2020;15(7):909-911
  23. Santana A, Salido E, Torres A, Shapiro LJ. Primary hyperoxaluria type 1 in the Canary Islands: a conformational disease due to I244T mutation in the P11L-containing alanine: glyoxylate aminotransferase. Proc Natl Acad Sci U S A. 2003;100(12):7277-82.
  24. Kohli H, Kurtz MP. Primary hyperoxaluria type 1: urologic and therapeutic management. Clin Kidney J. 2022;15(Suppl 1):i14-i16.
  25. Carrasco A Jr, Granberg CF, Gettman MT, Milliner DS, Krambeck AE. Surgical management of stone disease in patients with primary hyperoxaluria. Urology. 2015;85(3):522-6.
  26. Sas DJ, Harris PC, Milliner DS. Recent advances in the identification and management of inherited hyperoxalurias. Urolithiasis. 2019;47(1):79-89.
  27. Straub M, Gschwend J, Zorn C. Pediatric urolithiasis: the current surgical management. Pediatr Nephrol. 2010;25:1239-44.
  28. 28. Akcaboy M, Bakkaloglu SA. Cystinuria in Childhood. Klin Padiatr. 2021;233(4):200-202.
  29. Edvardsson VO, Goldfarb DS, Lieske JC, Beara-Lasic L, Anglani F, Milliner DS, et al. Hereditary causes of kidney stones and chronic kidney disease. Pediatr Nephrol. 2013;28(10):1923-42.
  30. Servais A, Thomas K, Dello Strologo L, Sayer JA, Bekri S, BertholetThomas A, et al. ystinuria: clinical practice recommendation. Kidney Int. 2021;99(1):48-58.
  31. Andreassen KH, Pedersen KV, Osther SS, Jung HU, Lildal SK, Osther PJ. How should patients with cystine stone disease be evaluated and treated in the twenty-first century? Urolithiasis. 2016;44(1):65-76.
  32. Torres RJ, Prior C, Puig JG. Efficacy and safety of allopurinol in patients with hypoxanthine-guanine phosphoribosyltransferase deficiency. Metabolism. 2007;56(9):1179-86.
  33. Basmaison O, Liutkus A, Michel L, Cordier MP, Cochat P. Néphropathies héréditaires et diagnostic anténatal génétique Arch Pediatr. 2006;13(6):727-9.
  34. Rumsby G. Genetic defects underlying renal stone disease. Int J Surg. 2016;36(Pt D):590-595.
  35. Jinnah HA, Friedmann T. Lesch-Nyhan disease and its variants. In: CR Scriver, AL Beaudet, WS Sly. Metabolic and molecular bases of inherited disease, 8th ed. New York: McGraw-Hill; 2001. 2537-2570.
  36. Sebesta I, Stiburkova B, Krijt J. Hereditary xanthinuria is not so rare disorder of purine metabolism. Nucleosides Nucleotides Nucleic Acids. 2018;37(6):324-328.
  37. Park JH, Jo YI, Lee JH. Renal effects of uric acid: hyperuricemia and hypouricemia. Korean J Intern Med. 2020;35(6):1291-1304.
  38. Edvardsson VO, Sahota A, Palsson R. Adenine Phosphoribosyltransferase Deficiency. 2012 Aug 30 updated 2019 Sep 26 . In: Adam MP, Mirzaa GM, Pagon RA, Wallace SE, Bean LJH, Gripp KW, Amemiya A, editors. GeneReviews® Internet . Seattle (WA): University of Washington, Seattle; 1993–2022.
  39. Marra G, Vercelloni PG, Edefonti A, Manzoni G, Pavesi MA, Fogazzi GB, et al. Adenine phosphoribosyltransferase deficiency: an underdiagnosed cause of lithiasis and renal failure. JIMD Rep. 2012;5:45-8.
  40. Alexander RT, Bitzan M. Renal Tubular Acidosis. Pediatr Clin North Am. 2019;66(1):135-157.
  41. Bergwitz C, Miyamoto KI. Hereditary hypophosphatemic rickets with hypercalciuria: pathophysiology, clinical presentation, diagnosis and therapy. Pflugers Arch. 2019;471(1):149-163.
  42. Gordon RJ, Li D, Doyle D, Zaritsky J, Levine MA. Digenic Heterozygous Mutations in SLC34A3 and SLC34A1 Cause Dominant Hypophosphatemic Rickets with Hypercalciuria. J Clin Endocrinol Metab. 2020;105(7):2392–400.
  43. Christensen S, Tebben PJ, Sas D, Creo AL. Variable Clinical Presentation of Children with Hereditary Hypophosphatemic Rickets with Hypercalciuria: A Case Series and Review of the Literature. Horm Res Paediatr. 2021;94(9-10):374-389.