Comparative study of multidrug-resistant bacterial infections in hospitals and community settings in the region of Monastir – Tunisia

##plugins.themes.academic_pro.article.main##

Hajer Rhim
Rahma Ben Trad
Ons Haddad
Yosr Kadri
Maha Mastouri

Abstract

Introduction and aim : Multidrug resistance in bacteria has become a widespread scourge. The objective of this study is to investigate
the epidemiology of multidrug-resistant bacteria (MDR) at Fattouma Bourguiba University Hospital of Monastir - Tunisia compared to the
community and to define their antibiotic resistance profiles.

Methods: It was a retrospective and descriptive study over a period of 5 years (2016-2020) conducted at the microbiology department of
Fattouma-Bourguiba University Hospital of Monastir - Tunisia. All MDR strains isolated from diagnostic microbiological samples collected from
patients hospitalized in high-risk infectious departments and from outpatients were included in our study.

Results : A total of 4324 MDR among 16353 bacteria were isolated during the study period, i.e. a resistance rate of 26.4% with a predominance
of hospital strains (80.3% versus 19.7% in the city). Third generation cephalosporin-resistant Enterobacteriaceae were the most prevalent and
were mainly represented by extended-spectrum beta- lactamases (67.1% versus 83.4% in the community). Escherichia coli was the most frequent
species (40.9%). It was frequently associated with resistance to fluoroquinolones (in more than 73% of cases). Imipenem-resistant Acinetobacter
baumannii was mostly responsible for hospital acquired infections (77%). Co- resistances concerned most of the antibiotics but spared colistin.
Methicillin-resistant Staphylococcus aureus infections were more frequent in the city (20.5% versus 19.3% in hospitals). Resistance associated was
mainly to fusidic acid (49.6%). Glycopeptides have maintained their activity and only 2% were of decreased sensitivity to vancomycin.

Conclusion : The emergence of MDR always represents a public health challenge. Thus, hygiene measures associated with an optimization
of antibiotic therapy are necessary for a better control of their diffusion.


##plugins.themes.academic_pro.article.details##

References

  1. Friedrich AW. Control of hospital acquired infections and antimicrobial resistance in Europe: the way to go. Wien Med Wochenschr. 2019;169(S1):25‑30.
  2. Aslam B, Wang W, Arshad MI, Khurshid M, Muzammil S, Rasool MH, et al. Antibiotic resistance: a rundown of a global crisis. Infect Drug Resist. 2018;11:1645‑58.
  3. Vivas R, Barbosa AAT, Dolabela SS, Jain S. Multidrug-Resistant Bacteria and Alternative Methods to Control Them: An Overview. Microb Drug Resist. 2019;25(6):890‑908.
  4. Abat C, Fournier P-E, Jimeno M-T, Rolain J-M, Raoult D. Extremely and pandrug- resistant bacteria extra-deaths: myth or reality? Eur J Clin Microbiol Infect Dis. 2018;37(9):1687‑97.
  5. Medina E, Pieper DH. Tackling Threats and Future Problems of Multidrug- Resistant Bacteria. Curr Top Microbiol Immunol. 2016;398:3‑33.
  6. Neubeiser A, Bonsignore M, Tafelski S, Alefelder C, Schwegmann K, Rüden H, et al. Mortality attributable to hospital acquired infections with multidrug-resistant bacteria in a large group of German hospitals. J Infect Public Health. 2020;13(2):204‑10.
  7. Million Y, Feleke T, Mengesha D, Senay B, Tigabu A. MultidrugResistant Bacteria Among Culture Isolates at University of Gondar, Specialized Referral Hospital, Northwest Ethiopia: a Five-Year Retrospective Study. Clin Lab. 2020;66(7).
  8. Jia X-Q, Pang F, Chen J-Z, Jiang L-X. Prevalence and clinical distribution of multidrug-resistant bacteria (3537 isolates) in a tertiary Chinese hospital (January 2012–December 2013). Pathol Bio (Paris). 2015;63(1):21‑3.
  9. Majdoub A, Kalifa ABH, Bannour I, Meksi Y, Ouaz M, Kheder M. Epidemiological situation of Enterobacteriaceae resistant to cephalosporins third generation in the region of Mahdia, Tunisia (2002-2014). Tunis Med. 2018;96:7.
  10. Association Santé Publique. Résistance aux antibiotiques: Santé publique France Resources Page Internet . updated 2022 March 29; cited 2022 June 23 . Available from: https://www. santepubliquefrance.fr / maladies-et-traumatismes/ infectionsassociees-aux-soins-et-resistance-aux antibiotiques /resistanceaux antibiotiques
  11. Amazian K, Fendri C, Missoum M, Noureddine B, Rahal K, Savey A, et al. Multicenter pilot survey of resistant bacteria in the Mediterranean area. Eur J Clin Microbiol Infect Dis. 2006;25:340‑3.
  12. Birgand G, Zahar J-R, Lucet J-C. Insight Into the Complex Epidemiology of Multidrug-Resistant Enterobacteriaceae. Clin Infect Dis. 2018;66(4):494‑6.
  13. Zahar J-R, Bille E, Schnell D, Lanternier F, Mechai F, Masse V,et al. Diffusion communautaire des entérobactéries sécrétrices de β-lactamase à spectre élargi (EBLSE). Med Sci (Paris). 2009;25(11):939‑44.
  14. Rohde AM, Zweigner J, Wiese-Posselt M, Schwab F, Behnke M, Kola A, et al. Incidence of infections due to third generation cephalosporin-resistant Enterobacteriaceae - a prospective multicentre cohort study in six German university hospitals. Antimicrob Resist Infect Control. 2018;7:159.
  15. Potz NAC, Hope R, Warner M, Johnson AP, Livermore DM, on behalf of the London & South East ESBL Project Group. Prevalence and mechanisms of cephalosporin resistance in Enterobacteriaceae in London and South-East England. J Antimicrob Chemother. 2006;58(2):320‑6.
  16. Ben Ammar S, Ben Mehidi M, Courcol R, Bouziane F, Boukhalfa S, Makhloufi M, et al. Résistance des entérobactéries aux carbapénèmes dans notre établissement (2014–2016). Med Mal Infect. 2017;47(4 Supplement):S29.
  17. Gales AC, Seifert H, Gur D, Castanheira M, Jones RN, Sader HS. Antimicrobial Susceptibility of Acinetobacter calcoaceticus– Acinetobacter baumannii Complex and Stenotrophomonas maltophilia Clinical Isolates: Results From the SENTRY Antimicrobial Surveillance Program (1997–2016). Open Forum Infect Dis. 2019;6(Supplement_1):S34‑46.
  18. Said D, Willrich N, Ayobami O, Noll I, Eckmanns T, Markwart R. The epidemiology of carbapenem resistance in Acinetobacter baumannii complex in Germany (2014– 2018): an analysis of data from the national Antimicrobial Resistance Surveillance system. Open Forum Infect Dis. 2021;10(1):45.
  19. Cattoen C, Levent T, Grandbastien B, Descamps D, Bouillet L, Coignard B, et al. Observatoire régional Pseudomonas aeruginosa du Nord-Pas-de-Calais : Données épidémiologiques et microbiologiques. Med Mal Infect. 1999;29(3):160‑6.
  20. Frikh M, A. Maleb INA. Pseudomonas aeruginosa : Epidémiologie et état actuel des résistances Etude retrospective sur trois ans. J Marocain Sci Med. 2017;21(2):34‑40.
  21. Barbier F, Wolff M. Multirésistance chez Pseudomonas aeruginosa : Vers l’impasse thérapeutique ? Med Sci (Paris). 2010;26(11):960‑8.
  22. Algammal A, Hetta HF, Elkelish A, Alkhalifah D, Hozzein W, Batiha G, and al. Methicillin-Resistant Staphylococcus aureus (MRSA): One Health Perspective Approach to the Bacterium Epidemiology, Virulence Factors, Antibiotic-Resistance, and Zoonotic Impact. Infect Drug Resist. 2020;13:3255‑65.
  23. Cristina Bellini, Nicolas Troilet. Résistance aux antibiotiques : état des lieux en Europe et en Suisse et impact pour le praticien. Rev Med Suisse. 2016;12:1699-702.