Aging, tobacco use and lung damages

##plugins.themes.academic_pro.article.main##

Sonia Rouatbi

Abstract

The main two functions of the lung are the respiratory functions, dependent on ventilatory mechanics and gas exchange, and the nonrespiratory functions such as metabolic, immunological, and endocrine ones. Lung aging is secondary to the age-dependent impairment of
one or more of these functions.


Tobacco use accelerates lung aging and touches biological, structural and respiratory and non-respiratory functions. These changes contribute
to the development of chronic pulmonary diseases and predispose to pulmonary infections in older individuals.


The knowledge of these changes is very useful for better management of elderly. Lung health in aging can be improved by strategies that slow
the age-related decline in lung function by acting on the environmental parameters. It is also possible to improve lung development in children
and to strengthen the lungs’ resistance to environmental challenges and thus to extrinsic lung aging.

##plugins.themes.academic_pro.article.details##

References

  1. Guénard H, Rouatbi S. Physiological aspects of the decline of pulmonary function with age. Rev Mal Respir 2004;21(5 Pt 3):8S13-24.
  2. Fraser HC, Kuan V, Johnen R, Zwierzyna M, Hingorani AD, Beyer A et al. Biological mechanisms of aging predict age-related disease co-occurrence in patients. Aging Cell 2022; 21(4): e13524.
  3. López-Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell 2013;153(6):1194-217.
  4. Lepeule J, Litonjua AA, Gasparrini A, Koutrakis P, Sparrow D, Vokonas PS, et al. Lung function association with outdoor temperature and relative humidity and its interaction with air pollution in the elderly. Environ Res 2018;165:110-7.
  5. Wu H, Ma H, Wang L, Zhang H, Lu L, Xiao T et al. Regulation of lung epithelial cell senescence in smoking –induced COPD/ emphysema by microR-125a-5p via Sp1 mediation of SIRT1/HIF1a. Int J Biol Sci 2022; 18(2): 661-74.
  6. Mercado N, Ito K, Barnes PJ. Accelerated ageing of the lung in COPD: new concepts. Thorax 2015;70(5):482–9.
  7. Griffith KA, Sherrill DL, Siegel EM, Manolio TA, Bonekat HW, Enright PL. Predictors of loss of lung function in the elderly. Am J RespirCrit Care Med 2001;163(1):61-8.
  8. Quanjer PH, Stanojevic S., Tim J. C, Baur X., Graham LH, Culver BH., Enright PL. et al. The ERS Global Lung function Initiative. Multiethnic reference values for spirometry for the 3–95 year age range: the global lung function 2012 equations. ERJ 2012 40: 1324-43.
  9. Enright PL, Beck KC, Sherrill DL. Repeatability of spirometry in 18,000 adult patients. Am J Respir Crit Care Med. 2004;169:235–238.
  10. Fernández-Villar A, Represas-Represas C, Mouronte-Roibás C, Ramos-Hernández C, Priegue-Carrera A, Fernández-García S et al. Reliability and usefulness of spirometry performed during admission for COPD exacerbation. PLOS ONE 2018; 13(3), e0194983.
  11. Kloot GS. The effects of aging on lung structure and function. Clin Geriatr Med 2017;33(4):447-57.
  12. Lombardi I, Oliveira LM, Mayer AF, Jardim JR, Natour J. Evaluation of pulmonary function and quality of life in women with osteoporosis. Osteoporos Int J Establ Result Coop Eur Found Osteoporos Natl Osteoporos Found USA 2005;16(10):1247-53.
  13. Culham EG, Jimenez HA, King CE. Thoracic kyphosis, rib mobility, and lung volumes in normal women and women with osteoporosis. Spine 1994;19(11):1250-5.
  14. Kaminsky DA. Spirometry and diabetes. Diabetes Care 2004; 27: 837-838
  15. Ito K, Barnes PJ. COPD as a disease of accelerated lung aging. Chest 2009;135(1):173–80.
  16. Cho WK, Lee CG, Kim LK. COPD as a disease of immunosenescence. Yonsei Med J 2019;60(5):407–13.
  17. MacNee W. Is chronic obstructive pulmonary disease an accelerated aging disease? Ann Am Thorac Soc 2016;13 Suppl5:S429–37.
  18. Fletcher C, Peto R. The natural history of chronic airflow obstruction. Br Med J 1977 25;1(6077):1645–8.
  19. Gillooly M, Lamb D. Airspace size in lungs of lifelong non-smokers: effect of age and sex. Thorax 1993;48(1):39–43.
  20. Similowski T., Muir JF., Derenne JP.: Physiopathologie In: Les bronchopathies chroniques obstructives. Paris, John Libbey Eurotext, 1999.
  21. West JB. Respiratory physiology: the essentials. In: Respiratory physiology: the Essentials. 8th ed Baltimore. MD Lippincott Williams and Wilkins; 2008.
  22. Chlif M, Keochkerian D, Temfemo A, Choquet D, Ahmaidi S. Inspiratory muscle performance in endurance-trained elderly males during incremental exercise. Respir Physiol Neurobiol 2016;228:61–8.
  23. Lalley PM. The aging respiratory system-Pulmonary structure, function and neural control. Respir Physiol Neurobiol 2013; 187(3): 199-210.
  24. Degens H, Gayan-Ramirez G, van Hees HWH. Smoking-induced skeletal muscle dysfunction: from evidence to mechanisms. Am J RespirCrit Care Med 2015;191(6):620–5.
  25. Caron M-A, Morissette MC, Thériault M-E, Nikota JK, Stämpfli MR, Debigaré R. Alterations in skeletal muscle cell homeostasis in a mouse model of cigarette smoke exposure. PloS One 2013;8(6):e66433.
  26. Winther Petersen AM, Magkos f, Atherton P, Selby A, Smith K, Rennie MJ et al. Smoking impairs muscle protein synthesis and increases the expression of myostatin and mafbx in muscle. Am J Physiol Endocrinol Metab 2007;293(3):E843-8
  27. Jackman RW, Kandarian SC. The molecular basis of skeletal muscle atrophy. Am J Physiol Cell Physiol 2004;287(4):C834-43.
  28. Sharma G, Goodwin J. Effect of aging on respiratory system physiology and immunology. Clin Interv Aging 2006;1(3):253–60.
  29. Rouatbi S, Ben Moussa S, Guezguez F, Ben Saad H. Muscle dysfunction in case of active tobacco consumption. Science & Sports 2017; 32(4): e119-26
  30. Levin DL, Buxton RB, Spiess JP, Arai T, Balouch J, Hopkins SR. Effects of age on pulmonary perfusion heterogeneity measured by magnetic resonance imaging. J Appl Physiol2007;102(5):2064–70.
  31. Rouatbi S, Dardouri K, FarhatOuahchi Y, Ben Mdella S, Tabka Z, Guenard H. Vieillissement du poumon profond. Rev Mal Respir 2006;23(5):445–52.
  32. Zhang J, Lin X, Bai C. Comparison of clinical features between non-smokers with COPD and smokers with COPD: a retrospective observational study. Int J Chron Obstruct Pulmon Dis 2014 Jan;9:57–63.
  33. Kronenberg RS, Drage CW. Attenuation of the ventilatory and heart rate responses to hypoxia and hypercapnia with aging in normal men. J Clin Invest 1973;52(8):1812–9.
  34. Hildebrandt W, Sauer R, Koehler U, Bärtsch P, Kinscherf R. Lower hypoxic ventilatory response in smokers compared to non-smokers during abstinence from cigarettes. BMC Pulm Med 2016;16: 159.
  35. Rouatbi S, Ghannouchi I, Bensaad H. The effects of aging on exhaled nitric oxide (FeNO) in a North African population. Lung 2019;197(1):73–80.
  36. Castelo-Branco C, Soveral I. The immune system and aging: a review. Gynecol Endocrinol Off J Int Soc Gynecol Endocrinol 2014;30(1):16–22.
  37. Fulop T, Larbi A, Kotb R, de Angelis F, Pawelec G. Aging, immunity, and cancer. Discov Med 2011;11(61):537–50.
  38. Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longev Heal 2013; 2(1):8.
  39. Wang L, Green FHY, Smiley-Jewell SM, Pinkerton KE. Susceptibility of the aging lung to environmental injury. Semin Respir Crit Care Med 2010;31(5):539–53.
  40. Solana R, Tarazona R, Gayoso I, Lesur O, Dupuis G, Fulop T. Innate immunosenescence: effect of aging on cells and receptors of the innate immune system in humans. Semin Immunol 2012;24(5):331–41.
  41. Aspinall R, Del Giudice G, Effros RB, Grubeck-Loebenstein B, Sambhara S. Challenges for vaccination in the elderly. Immun Ageing 2007;11:4-9.
  42. Whisler RL, Grants IS. Age-related alterations in the activation and expression of phosphotyrosine kinases and protein kinase C (PKC) among human B cells. Mech Ageing Dev 1993;71(1–2):31–46.
  43. Bueno M, Lai YC, Romero Y, Brands J, St Croix CM, Kamga C, et al. PINK1 Deficiency impairs mitochondrial homeostasis and promotes lung fibrosis. J Clin Invest 2015;125(2):521-38.
  44. Ferrucci L, Corsi A, Lauretani F, Bandinelli S, Bartali B, Taub DD, et al. The origins of age-related proinflammatory state. Blood 2005;105(6):2294–9.
  45. North BJ, Sinclair DA. The intersection between aging and cardiovascular disease. Circ Res 2012;110(8):1097-108.
  46. Zhang X, Shan P, Jiang G, Cohn L, Lee PJ. Toll-like receptor 4 deficiency causes pulmonary emphysema. J Clin Invest 2006;116(11):3050–9.
  47. Walters MS, De BP, Salit J, Buro-Auriemma LJ, Wilson T, Rogalski AM, et al. Smoking accelerates aging of the small airway epithelium. Respir Res 2014;15(1):94.
  48. Abrass IB, Scarpace PJ. Catalytic unit of adenylate cyclase:reduced activity in aged-human lymphocytes. J Clin Endocrinol Metab 1982;55(5):1026–8.
  49. Feldman RD, Limbird LE, Nadeau J, Robertson D, Wood AJ. Alterations in leukocyte β-receptor affinity with aging. A potential explanation for altered β-adrenergic sensitivity in the elderly. N Engl J Med 1984;310(13):815–9.
  50. Vestal RE, Wood AJJ, Shand DG. Reduced β-adrenoceptor sensitivity in the elderly. Clin Pharm Therap 1979; Volume 26 (N°2): 181-6
  51. Hu J, Liu B, Du Y, Zhang Y, Zhang Y, Zhang Y, et al. Increased circulating β2 -adrenergic receptor autoantibodies are associated with smoking-related emphysema. Sci Rep 2017;7(1):43962.
  52. Wills-Karp M. Age-related changes in pulmonary muscarinic receptor binding properties. Am J Physiol 1993;265(2 Pt 1):L103-9.
  53. Kistemaker LEM, Bos IST, Hylkema MN, Nawijn MC, Hiemstra PS, Wess J, et al. Muscarinic receptor subtype-specific effects on cigarette smoke-induced inflammation in mice. EurRespir J 2013;42(6):1677–88.
  54. Gheblawi M, Wang K., Viveiros A, Nguyen Q, Zhong JC, Turner AJ, et al. Angiotensin-converting enzyme 2: SARS-COV-2 receptor and regulator of the renin-angiotensin system. Circ Res 2020;126(10):1456–74.
  55. Xudong X, Junzhu C, Xingxiang W, Furong Z, Yanrong L. Ageand gender-related difference of ACE2 expression in rat lung. Life Sci 2006;78(19):2166–71.
  56. Smith JC, Sausville EL, Girish V, Yuan ML, Vasudevan A, John KM, et al. Cigarette smoke exposure and inflammatory signaling increase the expression of the SARS-CoV-2 receptor ACE2 in the respiratory tract. Dev Cell 2020;53(5):514-29.
  57. Wang W, Tang J, Wei F. Updated understanding of the outbreak of 2019 novel coronavirus (2019-nCoV) in Wuhan, China. J Med Virol 2020;92(4):441–7.
  58. Khelifa MB, Salem HB, Sfaxi R, Chatti S, Rouatbi S, Saad HB. «Spirometric» lung age reference equations: A narrative review. Respir Physiol Neurobiol 2018;247:31-42.
  59. Mdalla S, Ben Saad H, Ben Mansour N, Rouatbi B, Ben Esseghair M, Mezghani S, Rouatbi S. The announcement of the lung age it is a motivation to quit smoking? Tunis Med 2013;91(8-9):521-6.