

LA TUNISIE MEDICALE

Special issue: Septembre 2025

Integrating Organ, Environmental, and Mental Health Impacts Meta-analysis & systematic reviews

- Continuing versus withholding renin angiotensin aldosterone system antagonists before noncardiac surgery: A systematic review and meta-analysis
- The effect of Ambient heat exposure early in pregnancy on the frequency of congenital heart defects: A systematic review and meta-analysis
- The Effect of Inotropes in Patients with Advanced Heart Failure: A Meta-Analysis of Randomized Trials
- Effect of Paracetamol on Blood Pressure: A Systematic Review
- Effects of Heated Tobacco Products compared to Conventional Cigarettes on Cardiovascular System:
 A Systematic Review
- Efficacy and Safety of Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2i) in Cardiac Amyloidosis: A Systematic Review
- Cardiovascular risk and JAK inhibitor for the treatment of spondyloarthritis: A systematic review
- Long working hours and the risk of ischemic cardiac death: A systematic review and meta-analysis
- Cardiovascular and pulmonary response in Internet gaming disorder: A systematic review
- Cardiac Phenotypes and Endophenotypes in Schizophrenia: A systematic Review
- The Effects of TNF-alpha Inhibitors on Subclinical Atherosclerosis and Endothelial Function in Patients with Psoriatic Arthritis: A Systematic Review

Effects of TNF-α Inhibitors on Subclinical Atherosclerosis and Endothelial Function in Patients with Psoriatic Arthritis: A Systematic Review

Effets des anti-TNF alpha sur l'athérosclérose infraclinique et la fonction endothéliale chez les patients atteints de rhumatisme psoriasique : Revue systématique

Yasmine Makhlouf^{1,3}, Hiba Boussaa^{1,3}, Hiba Bettaieb^{2,3}, Alia Fazaa^{1,3}, Dergaa Ismai^{4,5}, Manel Boudokhane^{2,3}, Syrine Bellakhal^{2,3}, Mohamed Hedi Dougui^{2,3}, Kawther Ben Abdelghani^{1,3}, Saoussen Miladi^{1,3}, Ahmed Laatar^{1,3}

- 1. Department of Rheumatology, Mongi Slim University Hospital, Tunis, Tunisia
- 2. Internal Medicine Department, Internal Security Forces (ISF) Hospital, Tunis, Tunisia
- 3. University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunisia
- 4. High Institute of Sport and Physical Education of Ksar Saïd, University of Manouba, Manouba 2010, Tunisia
- 5. Research Laboratory Education, Motricité, Sport et Santé (EM2S) LR19JS01, High Institute of Sport and Physical Education of Sfax, University of Sfax, Sfax 3000, Tunisia

ABSTRACT

Background: Patients with psoriatic arthritis (PsA) are at increased risk of cardiovascular disease (CVD), largely driven by systemic inflammation and accelerated atherosclerosis. Tumor necrosis factor-alpha (TNF-alpha) inhibitors have transformed PsA treatment and may exert vascular protective effects. This systematic review aimed to evaluate the impact of TNF-alpha inhibitors on atherosclerosis and endothelial dysfunction in PsA patients.

Methods: This systematic review followed the preferred reporting items for systematic reviews guidelines. A systematic search of PubMed, Scopus, Cochrane Library and Embase databases was conducted, identifying original articles up to September 3rd, 2024. Outcomes included carotid intima-media thickness (CIMT), endothelial function, carotid plaques, and biomarkers of inflammation, lipid metabolism, and coagulation. This systematic review was registered in prospero (CRD42023451234).

Results: Five studies met the inclusion criteria and were published between 2011 and 2020. TNF-alpha inhibitors were associated with a reduction in CIMT in one study (0.7±0.18 vs 0.8±0.26; p=0.002 for the CCA and 0.94±0.31 vs 1.24±0.52; p<0.001 for the bulb), particularly with longer treatment duration (B:-0.317, p<0.001), while two studies reported progression of CIMT over time. Carotid plaque prevalence was significantly lower in TNF-alpha-treated patients compared to those on csDMARDs (15.8% vs 40.4%; p<0.0001). No consistent improvement in endothelial function, assessed by flow-mediated dilation or reactive hyperemia index was observed. TNF-alpha inhibitors consistently reduced inflammatory markers (CRP, ESR) and some lipid parameters (LDL-C, triglycerides). One study showed significant improvement in fibrinolytic and hemostatic markers (p<0.001), especially among patients achieving minimal disease activity (p<0.005).

Conclusion: TNF-alpha inhibitors may offer vascular benefits in PsA by attenuating subclinical atherosclerosis and systemic inflammation. However, their effects on endothelial function remain unclear. Further large-scale, controlled, and long-term studies are warranted to confirm their cardioprotective role and define their impact on clinical cardiovascular outcomes in PsA patients.

Keywords: Psoriatic arthritis, atherosclerosis, endothelial dysfunction, inflammation, TNF-alpha inhibitors

Introductions: Les patients atteints de rhumatisme psoriasique (RPso) présentent un risque accru de maladies cardiovasculaires (MCV), principalement en raison de l'inflammation systémique et de l"athérosclérose. Les inhibiteurs du facteur de nécrose tumorale alpha (TNF-α) ont transformé la prise en charge du RPso et pourraient exercer des effets vasculoprotecteurs. Cette revue systématique avait pour objectif d'évaluer l'impact des inhibiteurs du TNF-α sur l'athérosclérose et la dysfonction endothéliale chez les patients atteints de RPso.

Méthodes : Cette revue systématique a été conduite selon les recommandations PRISMA. Une recherche systématique a été effectuée dans les bases de données PubMed, Scopus, Cochrane Library et Embase, incluant les articles originaux publiés jusqu'au 3 septembre 2024. Les critères de jugement comprenaient l'épaisseur intima-média carotidienne (CIMT), la fonction endothéliale, la présence de plaques carotidiennes, ainsi que les biomarqueurs de l'inflammation, du métabolisme lipidique et de la coagulation. Cette revue systématique a été enregistrée sur PROSPERO (CRD42023451234).

Résultats: Cinq études, publiées entre 2011 et 2020, répondaient aux critères d'inclusion. Les inhibiteurs du TNF-α étaient associés à une réduction de la CIMT dans une étude $(0,7\pm0,18\ vs\ 0,8\pm0,26\ ;\ p=0,002\ pour\ la carotide commune et <math>0,94\pm0,31\ vs\ 1,24\pm0,52\ ;\ p<0,001\ pour\ le bulbe carotidien)$, notamment avec une durée de traitement plus longue $(B:-0,317\ ;\ p<0,001)$, tandis que deux études rapportaient une progression de la CIMT au fil du temps. La prévalence des plaques carotidiennes était significativement plus faible chez les patients traités par inhibiteurs du TNF-α comparés à ceux recevant des csDMARDs (15,8 % vs 40,4 %; p < 0,0001). Aucune amélioration constante de la fonction endothéliale, évaluée par la dilatation médiée par le flux ou l'indice d'hyperémie réactive, n'a été observée. Les inhibiteurs du TNF-α réduisaient de manière constante les marqueurs inflammatoires (CRP, VS) et certains paramètres lipidiques (LDL-C, triglycérides). Une étude montrait une amélioration significative des marqueurs fibrinolytiques et hémostatiques (p < 0,001), en particulier chez les patients atteignant une activité minimale de la maladie (p < 0,005).

Conclusion: Les inhibiteurs du TNF-a pourraient conférer des bénéfices vasculaires chez les patients atteints de RPso en atténuant l'athérosclérose infraclinique et l'inflammation systémique. Cependant, leurs effets sur la fonction endothéliale demeurent incertains. Des études complémentaires, à grande échelle, contrôlées et prospectibes, sont nécessaires pour confirmer leur rôle cardioprotecteur et préciser leur impact sur les événements cardiovasculaires cliniques chez les patients atteints de RPso.

Mots-clés: Rhumatisme psoriasique, athérosclérose, dysfonction endothéliale, inflammation, inhibiteurs du TNF-α.

Correspondance

Hiba Boussaa

Department of Rheumatology, Mongi Slim University Hospital, Tunis, Tunisia Email: hiba.boussaa@fmt.utm.tn

LA TUNISIE MEDICALE-2025; Vol 103 (09): 1238-1251

DOI: 10.62438/tunismed.v103i9.6331

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) which permits non-commercial use production, reproduction and distribution of the work without further permission, provided the original author and source are credited.

INTRODUCTION

Psoriatic arthritis (PsA) is a chronic inflammatory and immune-mediated disease that can variably affect synovial joints, tendons, entheses and axial sites. It develops in up to 30% of patients with established skin and/or nail psoriasis (1). PsA is also associated with systemic effects, notably an increased risk of cardiovascular disease (CVD) (2).

Patients with PsA exhibit a well-established increase in cardiovascular and metabolic risk factors, accelerated atherosclerosis, and a heightened incidence of premature cardiovascular events, such as myocardial infarction and stroke. Chronic systemic inflammation has been identified as a key driver of vascular dysfunction in these patients (3).

TNF-alpha, a pro-inflammatory cytokine, plays a pivotal role in the pathogenesis of PsA and has been implicated in both endothelial dysfunction and atherosclerosis progression. Elevated TNF-alpha levels are linked to increased vascular inflammation, which predisposes patients with PsA to early-onset CVD (4).

Over the past decades, TNF-alpha inhibitors have revolutionized the management of PsA by targeting systemic inflammation. Emerging evidence suggests that these agents may not only reduce joint inflammation but also appear to confer potential benefits in reducing adverse cardiovascular events and mortality in patients with PsA (5).

While the cardiovascular benefits of TNF-alpha inhibitors are well established in rheumatoid arthritis (6), their impact on atherosclerosis in patients with PsA remains less clearly defined. The limited studies conducted to date have reported inconsistent findings, with some suggesting improvements in atherosclerosis-related markers, while others have demonstrated minimal or no benefit (7–11).

Since the last comprehensive systematic review in 2014 (12), no updated synthesis has thoroughly evaluated the effects of TNF-alpha inhibitors on atherosclerosis in

patients with PsA. Given the increased cardiovascular risk in these patients, understanding the impact of these biologic therapies on atherosclerotic progression is critical for optimizing patient outcomes.

This systematic review aimed to synthesize the existing evidence on the effect of TNF-alpha inhibitors on atherosclerosis and endothelial dysfunction in patients with PsA.

METHODS

All data analyzed were extracted from published studies. A narrative synthesis was used to integrate the findings due to anticipated heterogeneity among the included studies, particularly in terms of study designs, interventions, and outcome measures. For the present paper, no ethical approval or written informed consent was required.

This systematic review was registered in prospero: CRD42023451234. The methodology of the current systematic review is detailled in the protocol (13).

Search strategy

This systematic review followed the preferred reporting items for systematic reviews guidelines (PRISMA) (14). Eligible articles were searched in Pubmed, Scopus, Embase and Cochrane Library. For PubMed, the search was carried out using a strategy employing the combination of the MeSH (Medical Subject Headings) terms associating the synonyms of "psoriatic arthritis", "tumor necrosis factor alpha inhibitors", and "atherosclerosis" or "endothelial dysfunction" (Supplementary Table 1). For Scopus, Cochrane Library and Embase, the previous terms were searched in the article title, abstract, or keywords. In addition, the reference lists of the included articles were checked. The two first authors of this systematic review (MY and BH) agreed on the articles to be included in this paper. All the aspects of systematic review methods were predefined prior to initiating the review.

Synonyms of Psoriatic arthritis			Synonyms of TNF alpha inhibitors	Synonyms of atherosclerosis		
«Psoriatic Abstract]	OR	arthritis»[Title/ «PsA»[Title/	AND	AND		
Abstract]			«TNF-alpha inhibitors»[Title/Abstract] OR	«atherosclerosis»[Title/Abstract] OR «subclinic		
			«TNF inhibitors»[Title/Abstract] OR «anti-	atherosclerosis»[Title/Abstract] OR «carotid intima-med		
			TNF»[Title/Abstract] OR «TNF blockers»[Title/	thickness»[Title/Abstract] OR «C-IMT»[Title/Abstract] O		
			Abstract] OR «infliximab»[Title/Abstract]	«Intima-Media Thickness"[Title/Abstract] OR «endotheli		
			OR "Tumor Necrosis Factor- α Blockers"	function»[Title/Abstract] OR «endothelial dysfunction»[Title		
			[Title/Abstract] OR «adalimumab»[Title/	Abstract] OR «Atheroscleroses»[All fields] OR «vascula		
			Abstract] OR «etanercept»[Title/Abstract]	risk factors»[Title/Abstract] OR «VRFs"[Title/Abstract] O		
			OR «golimumab»[Title/Abstract] OR	«Atherogenesis»[All fields]) OR «flow-mediated dilation" [Title		
			«certolizumab»[Title/Abstract]	Abstract] OR «FMD»[Title/Abstract] OR «arterial stiffness»[Title		
				Abstract] OR «vascular function»[Title/Abstract] O		
				«cardiovascular risk»[Title/Abstract] OR «carotid atherosclerot		
				disease»[Title/Abstract] OR «fibrinolytic changes»[Title		
				Abstract] OR «fibrinolytic variables»[Title/Abstract]		

Selection criteria

Inclusion criteria:

A comprehensive search was conducted from inception until September 3rd, 2024. This review included studies that met the following PICOS criteria: 1) Patients with PsA according to the CASPAR or 2009 ASAS criteria (P), 2) Treated with TNF-alpha inhibitors as the primary treatment intervention (I), 3) Compared to patients receiving other biologics, conventional synthetic diseasemodifying antirheumatic drugs (csDMARDs), placebo, or before-and-after comparisons within the same cohort (C), 4) The main outcome of interest included atherosclerosisrelated measures such as carotid intima-media thickness (CIMT) measurements (mean-max of common carotid artery (mean-max CCA, mm), mean-max of the carotid bifurcation (mean-max bulb, mm), cumulative mean of mean-CIMT (mean-CIMT) and cumulative mean of maximum-CIMT (max-CIMT)), endothelial dysfunction (flow-mediated dilation (FMD)), reactive hyperemia index (RHI), arterial stiffness, and the presence of carotid plaques. The secondary outcomes included atherosclerosis biomarkers (Erythrocyte sedimentation rate (ESR), C-reactive protein (CRP), high-sensitivity CRP (hs-CRP), Osteoprotegerin (OPG), interleukin-6 (IL-6), vascular endothelial growth factor (VEGF), total cholesterol, LDL cholesterol, triglycerides, homeostatic and fibrinolytic markers.

Only full papers available and written in English were considered. We selected in this systematic review original articles: observational studies (cohort, case-control, cross-sectional) and randomized controlled trials (RCTs) (S). Additional articles were manually retrieved based on the references of selected articles. If any study included overlapping data, the most comprehensive one was selected.

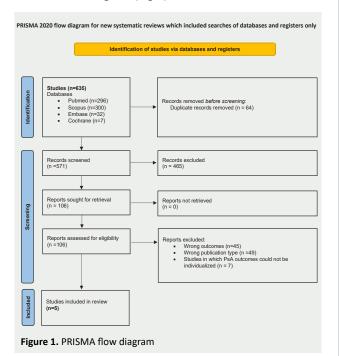
Exclusion criteria:

- Studies were excluded if they did not report direct measurements of atherosclerosis or endothelial dysfunction.
 Papers written in languages other than English.
 Publications not representing original research (i.e.; reviews)
- Publications not representing original research (i.e.; reviews, editorials, qualitative papers, case reports, and letters to editors) were excluded. Articles not in compliance with the systematic review purpose were excluded.

Study Selection Process

The search strategy, literature selection, and data extraction were conducted independently by two investigators (MY and BH), using a pre-piloted data extraction form, then discussed. The selection of studies was carried out in two stages: Stage 1: Initial Screening where the reviewers assessed titles and abstracts against the eligibility criteria. Studies that clearly did not meet inclusion criteria were excluded at this stage, Stage 2: Full-Text Review, during which full-text articles were retrieved for studies that met the initial screening criteria. Both reviewers independently assessed the full text for inclusion, and any discrepancies were resolved by a third reviewer (BH). The extracted data included the main methodological characteristics of the articles:

study data (year of publication, country, study design, number and mean age of included subjects, inclusion and exclusion criteria, duration of the follow-up), population characteristics (age, gender, PsA severity, and comorbidities), intervention details (type and dosage of TNF-alpha inhibitor, frequency of administration) as well as outcomes data.


Quality of the studies and risk of bias assessment

To evaluate the methodological quality of the included studies, we used Methodological items for non-randomized studies (MINORS) for observational studies and Consolidated Standards of Reporting Trials (CONSORT) for randomized trials (15,16). Furthermore, we identified potential biases using Newcastle Ottawa Scale (NOS) for the cohort and case control studies and the revised Cochrane risk-of-bias tool for randomized trials (RoB 2) (17,18). Only studies that met high-quality criteria belonged to our final selection.

RESULTS

Study Selection

The current systematic review encompassed a total of 5 articles, selected from an initial pool of 635 papers identified through a search process outlined in the PRISMA flow diagram (Fig 1).

Study Characteristics

The main characteristics of the 5 studies retained in this systematic review are represented in Supplementary Table 2. The studies, published between 2011 and 2020 (7,8), were conducted across various countries, including Italy (7–10) and Norway (11). The included studies consisted of 5 observational studies with prospective (7–11) and control-group (7,10) designs.

Supplementary table S2. Main characteristics and results of the selected studies aiming to assess the effect of TNF alpha inhibitors on atherosclerosis in psoriatic arthritis patients: a systematic review First author Study design/ Inclusion, exclusion Methods of evaluation Cardiovascular Main outcomes Conclusion criteria (ref) disease parameters Characteristics of of the authors Year of the population publication studied Country Ortolan et al. Cohort study AT FU2: IMT-mean and M-max Inclusion Period of evaluation Arterial structural . A slight progression did not change significantly 2020 Cases: 32 (51±8) (0.9±0.3 and 1.1±0.3, p=ns). .PsA patients according at baseline (T0), 2 years Properties. B-mode of subclinical Italy to the CASPAR criteria atherosclerosis in (FU1) and 5 years (FU2) ultrasound . No significant variation in FMD of treatment PsA was observed values was observed during the Inadequate response in the first 2 years .carotid intima-media study period. or intolerant to Parameters evaluated of anti- TNF-α CsDMARDs and treated thickness (mean-IMT) treatment. .SBP remained stable throughout Disease activity with anti-TNF-α the follow-up parameters: .maximum IMT This process .None concomittant use .DBP decreased significantly TJ, SJ, PASI, (DAS)-28, of DMARDs. seemed to (M-MAX) in each from FU1 to FU2 (80±10 vs. 74±7 decelerate segment (common, mmHg, p=0.001). in follow-up . Sporadic NSAIDs or .Atherosclerosis extension to 5 bulb, internal), . Significant decrease of DAS28 low-dose glucocorticoid biomarkers: years. less than1 week per and CRP was observed at FU1 bilaterally. hs-CRP, OPG, TC, LDL-C month allowed and preserved at FU2 (DAS28 2.4±0.9, CRP 2.73±2.51; p=ns Endothelial function Total cholesterol Exclusion vs. FU1). (TC), low-density Glomerular filtration and high-density post-occlusion .Hs-CRP, OPG, TC, LDL-C rate <60 ml/min. lipoproteins (LDL-C, decreased at FU1, and remained flow-mediated diabetes mellitus HDL-C), triglycerides stable at FU2 dilation (FMD) of (TG), blood glucose, .Pre-existing coronary .Fasting glucose slightly increased C-reactive protein (CRP), the brachial artery artery disease, at FU1 but then tended to high-sensitivity CRP cerebrovascular using high-sensitivity (hs-CRP), TNF- α and stabilise at FU2 accident, transient osteoprotegerin (OPG) ultrasonography. .Triglycerides decreased at FU1, ischaemic attack or peripheral vascular B-mode scan of the and then increased back at FU2 .Blood pressure: SBP, disease DBP right brachial artery .No significant difference .Treatment for was observed in HDL-C levels in longitudinal section metabolic syndrome throughout the study period. above the elbow (e.g. statins, .No major CV events were antihypertensive or observed over the 5-year period hypoglicaemic drugs), in our low-risk population active smokers. Ramonda et al. Cohort study Inclusion Period of evaluation Arterial structural .Mean-IMT and M-Max were Despite improvement significantly higher than at 2014 Cases: 32 (51±8) at baseline (T0), 2 years .PsA patients according in clinical Properties. B-mode baseline 0.75 ± 0.12 vs 0.95 ± September 2011 to to the CASPAR criteria status, arterial of treatment Italy ultrasound remodelling was June 2012. 0.39 and 0.90 \pm 0.23 vs 1.08 \pm Parameters evaluated observed in the Inadequate response 0.43 P < 0.0005) .carotid intima-media PsA patientswho or intolerant to .Disease activity were treated CsDMARDs and treated parameters: thickness (mean-IMT) with anti TNFwith anti-TNF-α FMD was unmodified: 5.8 ± 2.1 agents for two TJ, SJ, (DAS)-28 .maximum IMT vs 5.3 ± 1.6 ns years. .None concomittant use .Atherosclerosis (M-MAX) in each of DMARDs. SBP and DBP did not vary during biomarkers: segment (common, Sporadic NSAIDs or hs-CRP, OPG, TC, LDL-C the study period. CRP (P < 0.01) bulb, internal), low-dose glucocorticoid and OPG (P = 0.011) serum levels Total cholesterol (TC), less than1 week per bilaterally. were significantly decreased month allowed low-density and highdensity lipoproteins **Endothelial function** while serumTNF- _ levels Exclusion (LDL-C, HDL-C), increased (P = 0.0003); IL-6 and triglycerides (TG), blood .Glomerular filtration post-occlusion glucose, TNF-α, OPG, VEGF were not modified rate <60 ml/min flow-mediated (IL)-6, and VEGF diabetes mellitus dilation (FMD) of .Pre-existing coronary .Blood pressure: SBP, the brachial artery artery disease cerebrovascular using high-sensitivity accident, transient ultrasonography. ischaemic attack or peripheral vascular B-mode scan of the disease right brachial artery Treatment for in longitudinal section metabolic syndrome above the elbow (e.g. statins, antihypertensive or

hypoglicaemic drugs), active smokers.

Supplementary table S2. (following) Main characteristics and results of the selected studies aiming to assess the effect of TNF alpha inhibitors on atherosclerosis in psoriatic arthritis patients: a systematic review

First author (ref) Year of publication Country	Study design/ Characteristics of the population studied	Inclusion, exclusion criteria	Methods of evaluation	Cardiovascular disease parameters	Main outcomes	Conclusion of the authors
Deyab et al. 2017 Norway	Observational study 29 PsA patients Mean age: 50 [23-78]	Inclusion criteria: - Males and females with an age range 18–80 years - PsA according to the Moll and Wright 1973 criteria - Clinical indication for starting with either MTX monotherapy or anti-TNF treatment with or without MTX comedication (anti-TNF ± MTX). Exclusion criteria: - Lack of cooperability, anycontraindication for MTX and anti-TNF - Any significant infection (including subclinical tuberculosis), pregnancy or breastfeeding, congestive heart failure, use of systemic glucocorticoids > 10 mg/day during the last 2 weeks or anti-TNF during the last 4 weeks before the inclusion - Any chronic inflammatory disease other than RA, AS, or PsA	weeks and 6 months of treatment. Parameters evaluated: -Disease activity: CRP, ESR, BASDAI, BASFI, PtGA, PGA, MHAQ -Cardiovascular risk factors: Hypertension, BMI hyperlipidemia, current smoking, family history of CVD or death, diabetes -Medical history: Previous myocardial infarction, angina pectoris	the endothelium by measurment of finger arterial pulsatile volume, changesReactive Hyperemic Index (RHI): ratio between the magnitude of the average postobstructive pulse wave amplitude (PWA) and the average of baseline PWA (preocclusion). Endothelial Dysfunction was defined as RHI ≤ 1.67 as recommended by the manufacturer and in	. The PsA group showed RHI improvement at both visits (RHI at 6 weeks = 1.67 and RHI at 6 months = 1.80). . None of the RHI changes in the PsA group reached statistical significance. . In both treatment groups, RHI significantly improved at both follow-up visits compared to baseline (MTX: baseline to 6 weeks p = 0.002, baseline to 6 months p = 0.001; anti-TNF ± MTX: baseline to 6 months of treatment, RHI values in the MTX group continued to increase compared to 6 weeks. However, in the anti-TNF ± MTX group RHI values at 6 months were lower than at 6 weeks, resulting in a statistically significant difference in RHI values between the two groups at 6 months. Within the SRA and PsA groups there were no significant differences in RHI between patients treated with MTX and anti-TNF ± MTX. The difference in RHI change from baseline to 6 months between the MTX group and the anti-TNF ± MTX group remained statistically significant after adjustments for age, female gender, rheumatic disease duration, and IA diagnosis In analyses adjusted for baseline RHI values, MTX was associated with a greater improvement in RHI than antiTNF ± MTX after 6 months in patients with ED (p =	Treatment with MTX and anti-TNF ± MTX was associated with a relatively fast improvement of El in IA patients with ED, independent of change in disease activity. After 6 months, the F improvement was more pronounced in the MTX group than in the anti-TNF ± MT group. No statistical differences were demonstrated in the PsA group.
Di-Minno Et al 2011 Italy	Cross-sectional Comparative study (June 2009-January 2010) Case group:224 PSA patients: .Age: 52.61 ± 11.37. .120 on TNF- blockers for ≥ 1 year. .104 on traditional DMARD for ≥1 year. control group: 305 matched subjects without inflammatory or rheumatologic disease	Inclusion: PSA patients fulfilling CASPAR criteria. Clinically active disease. None of the subjects in the case group were on NSAIDs or prednisone at the time of the study, nor were any of them receiving combined treatments (TNF- blockers, DMARDs). Exclusion: Age <18 years. High-grade carotid stenosis or a history of carotid surgery/ stenting. Familial hypercholesterolemia/ hypertriglyceridemia. NYHA class III/IV heart failure, arrhythmia, recent vascular events or venous thrombosis.	Period of evaluation: No baseline/No follow-up US assessment Timing: performed once per patient during the 6-month enrollment Parameters evaluated Disease activity parameters: PGA, BASDAI, DAS28, ESR, CRP, interleukin 6 Vascular risk factors (VRFs): Fasting glucose, Blood pressure, total cholesterol (TC), low high-density lipoproteins (HDL-C), triglycerides (TG), waist circumference. Patients were defined as having a MetS if 3 or more of these VRFs were present.	The subjects underwent a bilateral carotid ultrasonography with measurements of the common carotid artery (CCA) and carotid bifurcation (bulb) in multiple projections (anterior, lateral and posterior). .Carotid intima-media thicnkness (C-IMT) Measurements: .The CCA-IMT .mean-maxCCA .mean-maxBulb .presence of carotid plaques	0.007). PsA patients without VRFs had higher C-IMT versus 40.4% than controls (p<0.0001). C-IMT was lower in PsA patients on TNF blockers vs DMARDs (p<0.0001). Treatment duration inversely predicted C-IMT in TNF blockers group (β = -0.317, P<0.0001). Carotid plaques were found in 15.8% in patients on TNF blockers (vs 40.4% in patients on DMARDs; p<0.0001). The presence of carotid plaques was inversely correlated with TNF blockers duration (r = -0.206, p =0.024). No significant correlation were found between disease duration and these parameters: C-IMT and the presence of carotid plaques. The MetS was not associated with differences in C-IMT in subjects on TNF- blockers.	The study suggests that TNF-blockers are more effective in reducing subclinical atherosclerosis and improving cardiovascular outcomes in PsA patients. PsA patients on TNF-a blockers had lower C-IMT and fewer carotid plaques compared to those on traditional DMARDs.

Supplementary table S2. (following) Main characteristics and results of the selected studies aiming to assess the effect of TNF alpha inhibitors on atherosclerosis in psoriatic arthritis patients: a systematic review

First author (ref)	Study design/	Inclusion, exclusion criteria	Methods of evaluation	Cardiovascular disease parameters	Main outcomes	Conclusion
Year of publication	Characteristics of the population studied	criteria		uisease parameters		of the authors
				/=0\	- C	
(ref) Year of publication Country Di-Minno Et al. 2014 Italy	• •	Inclusion: PsA patients fulfilling CASPAR criteria Non-responders to DMARDs (Group 1) or achieving MDA (Group 2). Exclusion: History of thrombosis, antiphospholipid antibodies, chronic infectious disease (including hepatitis B and C) or conditions affecting hemostasis. Previous treatment with TNF-a blockers.	Period of evaluation At baseline (TO) and after 6 months of treatment. Parameters evaluated . Vascular risk factors (VRF): (obesity, HTN, impaired fasting glucose, hypercholesterolemia, and hypertriglyceridemia). . Disease activity parameters: TJC, SJC, tender entheseal count, PASI, HAQ,VAS score, ESR, CRP, Subjects were classified as having achieved MDA when fulfilling 5 of the following 7 outcome measures at 6-month followup (T1): TJC ≤ 1, SJC ≤ 1, PASI ≤ 1 or body surface area ≤ 3, VAS for pain ≤ 15, patient global disease activity VAS score of ≤ 20, HAQ ≤ 0.5, and	At baseline (T0) and after 6 months of treatment: .Hemostatic variables (fibrinogen, D-dimer, FVII, FVIII, vWF). .Fibrinolytic variables (PAI-1, t-PA, PAI-1/t-PA ratio). .Inflammatory markers (CRP, ESR).	.After 6 months of follow-up, 27 (35.5%) of case group 76 achieved MDA. Effect of TNF-α Inhibitors on Hemostatic and Fibrinolytic Variables: . Patients with PsA treated with TNF-α inhibitors (Group 1) showed significant improvements in hemostatic and fibrinolytic variables after 6 months, unlike those on traditional DMARD (Group 2): In Group 1, changes were significant for PAI-1 (p < 0.001), t-PA (p < 0.001), fibrinogen (p < 0.001), D-dimer (p < 0.001), protein C (p < 0.001), protein C (p < 0.001), protein S (p < 0.001), and antithrombin (p = 0.031). No significant changes were observed in Group 2 (p > 0.05 for all variables). . TNF-α blockers significantly reduced prothrombotic markers thand DMARD (e.g., Δ-percentage fibrinogen: –15.2% vs. –1.3%; p < 0.001).	.TNF-α inhibitors improve hemostati and fibrinolytic balance in PSA patients, particular in those achieving MDA. .Maximal effects were seen in fibrinolytic variable (PAI-1, t-PA) and acute-phase proteins (D-dimer, FVIII, vWF).
			$\mbox{HAQ} \le 0.5,$ and tender entheseal points $\le 116.$ Otherwise, they were considered as not having achieved MDA (no-MDA).		TNF-α inhibitors significantly reduced levels of fibrinolytic markers (PAI-1, t-PA) and acute-phase proteins (D-dimer, FVIII, vWF) compared to DMARD (p < 0.001 for all comparisons between Group 1 and Group 2). Among TNF-α-treated patients, those achieving MDA had greater reductions in hemostatic/fibrinolytic variables than non-MDA patients (p < 0.05 for all).	
					. MDA achievement maximally impacted fibrinolytic variables: PAI-1 (β = 0.691; p < 0.001) and t-PA (β = 0.326; p = 0.004). Inflammation and Hemostatic Changes: . Δ -percentage CRP reduction is correlated with improvements in these parameters: PAI-1 (r = 0.326, p = 0.004), PAI-1/t-PA ratio (r= 0.283, p = 0.013), and D-dimer (r = 0.250, p = 0.029). Multivariate Analysis: TNF- α treatment independently predicted improvements in fibrinolytic (PAI-1, t-PA) and coagulation (D-dimer, FVIII, vWF)	

Exclusion criteria were explicitly stated in all studies, with common criteria including the presence of a glo-merular filtration rate <60 ml/min (8,9), diabetes mellitus (8,9), pre-existing coronary artery disease, cerebrovascular acci-dent, transient ischaemic attack or pe-ripheral vascular disease (7–9,11), familial hypercholesterolemia/ hypertriglyceridemia (7), any significant infection (including subclinical tuberculosis) (10,11), pregnancy or breastfeeding (10,11), use of systemic glucocorticoids >10 mg/day during the last 2 weeks or anti-TNF during the last 4 weeks before the inclusion (7,10,11), treatment for metabolic syndrome (e.g. statins, anti-hypertensive or hypoglicaemic drugs) and active smoking (8), immunologic disorders other than PsA, rheumatoid arthritis (RA) (10,11), conditions known to affect hemostatic variable levels (10).

Characteristics of the patients

The main characteristics of the patients are represented in Supplementary Table 2.

The sample sizes of the studied group ranged from 29

to 224 participants (7,11). The majority of the studies involved patients diagnosed with PsA based on the CASPAR criteria (7–10) and one study according to the 1973 Moll and Wright criteria (11). The study by Deyab et al. also included patients with RA (n = 64) and AS (n = 20) (11). The sample size of the control group ranged from 98 and 305 (7,10). The mean age of the PsA groups was 50 years [45.7-52.6] (7,10). The duration of follow up was 6 weeks (11), 6 months (7,10,11), 2 years (9), and 5 years (8). One study had a cross-sectional design. Therefore, no follow-up was conducted (7). The distribution of the patients according to the type of anti TNF-alpha agent was described in 4 articles (7–10). The most prescribed TNF-alpha blocker was Etanercept (n=81) followed by Adalimumab (n=74), and infliximab (n=73).

Risk of Bias Assessment

The risk of bias assessment indicated that all these studies were at low risk of bias. The detailed risk of bias evaluations, categorized by study design, are summarized in Supplementary Table 3.

Supp	lemen	tary t	abl	e S3:
------	-------	--------	-----	-------

Quality of the studies using MINORS

	Ortolan et al. 2020	Ramonda et al. 2014	Di Minno et al. 2011	Di Minno et al. 2014	Deyab et al. 2017
A clearly stated aim	2	2	2	2	2
nclusion of consecutive patients	2	2	2	2	2
Prospective collection of data	2	2	1	2	2
ndpoints appropriate to the aim of the study	1	1	2	2	2
Inbiased assessment of the study endpoint	0	0	2	1	0
ollow-up period appropriate to the aim of the study	2	1	-	2	1
oss to follow up less than 5%	2	2	-	0	2
rospective calculation of study size	0	0	2	0	0
An adequate control group	-	-	2	2	-
Contemporary groups	-	-	2	2	-
Baseline equivalence of groups	-	-	1	1	-
Adequate statistical analyses	-	-	2	2	-
Score	11/16	11/16	18/20	18/24	11/16
nterpretation	Moderate Quality	Moderate Quality	High quality	Good Quality	Moderate Qual

Risk of Biais using New castle Ottawa scale (cohort)

	Selection			Comparability	Comparability Outcome			Risk of biais	
	1	2	3	4	5	6	7	8	
Ortolan et al.2020	b	а	а	а	0	b	а	b	7 (High Quality/Low risk of biais)
Ramonda et al.2014	b	а	а	а	0	b	а	b	7 (High Quality/Low risk of biais)
Di Minno et al. 2014	а	а	а	а	b	а	а	С	7 (Good Quality/Low risk)
Deyab et al. 2017	b	а	а	а	a	d	b	a	6

Risk of Biais using New castle Ottawa scale (case -control)

	Selection				Comparability	Comparability Outcome			Risk of biais	
	1	2	3	4	5	6	7	8		
Di Minno et al.2011	а	а	а	а	b	а	а	С	7 (good quality/ Low risk)	

Effect of TNF-alpha inhibitors on atherosclerosis-Related Measures

Carotid Intima-Media Thickness (CIMT)

Three studies measured the effect of TNF-alpha inhibitors on CIMT in PsA patients (7–9). According to Di Minno et al., CIMT was significantly lower in PsA patients on TNF-alpha blockers compared to those on csDMARDs (p<0.0001). Both mean-max values of CCA (mm) and bulb (mm) were lower when compared to the control group (0.7±0.18 vs 0.8±0.26; p=0.002 for the CCA and 0.94±0.31 vs 1.24±0.52; p<0.001 for the bulb). Among TNF-alpha

inhibitors, adalimumab showed the strongest association with reduced mean-max CCA and bulb thickness, followed by etanercept and infliximab (7). In this study, longer exposure to TNF-alpha blockers was associated with lower CIMT (mean-max CCA: r=-0.319, p<0.001, mean-max bulb: r=-0.296; p=0.001). In the linear regression model, treatment duration significantly predicted CIMT improvement in patients on TNF-alpha inhibitors (B:-0.317, p<0.001). However, findings from Ramonda et al. and Ortolan et al. showed that CIMT progressed after two years of follow-up (8,9) (Table 1).

Table 1. Overview of eligible studies on effects of TNF inhibitors on Subclinical Atherosclerosis and Endothelial Function in Patients with Psoriatic Arthritis

First author	Primary outcomes		Secondary outcomes		
	Carotid intima media thickness	Endothelial function	Carotid plaques	Inflammatory markers Lipid profile	Homeostatic and Fibrinolytic function
Di-Minno et al. 2011	TNF blockers vs DMARDs:	_	15.8% (n=19) in patients on TNF	TNF blockers vs DMARDs	_
[7]	Mean-max CCA (mm): 0.7 ±0.18 vs 0.8±0.26; p =0.002).		blockers and in 40.4% (n=42) in patients on DMARDs; p<0.0001).	ESR: 14.23 ±8.53 vs 24.11±16.66 , p<0.0001	
	Mean-max bulb (mm): 0.94±0.31 vs 1.24±0.52; p<0.001).		The presence of carotid plaques was	CRP:1.98 ±1.8 vs 3. 6±3.9, p=0.007 No differences between PsA	,
	Treatment duration inversely predicted C-IMT in TNF blockers group (β = -0.317, P<0.0001).		inversely correlated with TNF blockers duration (r= -0.206, p=0.024).	groups regarding interleukin 6 (ng/l) (p=0.07).	
	No significant correlation between disease duration and CIMT parameters (p=0.954 for mean-max CCA and p=0.904 for mean-max	t.	,		
	bulb).		•		
Ortolan et al. 2020 [8]	Mean CIMT (baseline to FU1) 0.9 ± 0.4 vs 0.7 ± 0.1; p<0.0001 at	No significant variation in FMD	_	From baseline to FU1	
	baseline. (FU1 to FU2) 0.9 ± 0.3 vs 0.9 ± 0.4 ; p:NS. Max CIMT (baseline to FU1):1.1 ± 0.4 vs 0.90 ± 0.2 : p< 0.0001 at	(%) values		CRP (mg) 2.91 ± 1.72 vs 11.25 ± 9.16 ; p=0.01, hs-CRP (mg/l) (1.88 ± 2.27 vs 2.85 ± 2.86 ; p=0.001) and OPG (pg/ml) (1297 ± 615 vs 1430 ± 648 ; p=0.01).	
	baseline. (FU1 to FU2) 1.1 ± 0.3 vs 0.90 ± 0.2 : p: ns at FU1.			Significant decrease of lipid profile (mmol/l): total cholesterol	
				(5.1±0.93 vs 5.45±1.08; p=0.01), LDL-cholesterol (3.1±0.87 vs 3.42±0.77; p=0.02) and	
				triglycerides (1.25±0.15 vs 1.47±0.74; p<0.0001).	
				At FU2,	
				Triglycerides increased back at FU2 (1.72±0.62 vs 1.25±0.15; p<0.0001).	
				CRP, hs-CRP, OPG, Total cholesterol, LDL-C remained stable at FU2 (p:ns).	
				No significant difference was observed in HDL-C levels throughout the study period.	

 Table 1. (following)
 Overview of eligible studies on effects of TNF inhibitors on Subclinical Atherosclerosis and Endothelial Function in Patients with Psoriatic Arthritis

First author	Primary outcomes		Secondary outcomes			
	Carotid intima media thickness	Endothelial function	Carotid plaques	Inflammatory markers Lipid profile	Homeostatic and Fibrinolytic function	
Ramonda et al.	At 2 years of follow-up:	At 2 years of follow-up:	_	At 2 years of follow-up:	_	
[3]	Mean CIMT 0.75 ± 0.12 vs 0.95 ± 0.39 ; P < 0.0005). Max CIMT and 0.90 ± 0.23 vs 1.08 ± 0.43 ; P < 0.0005).	FMD (%) was unmodified: 5.3 ± 1.6 vs 5.8 ± 2.1; p:ns).		Significant decrease of CRP (mg) (2.9± 1.7 vs 11.2 ± 9.2; p<0.001), OPG (pg/ml) (1219 vs 1341; p=0.011). Significant decrease of lipid profile (mmol/l): LDL-cholesterol (3.1±0.96 vs 3.1±0.87; p=0.013) and triglycerides (1.24±0.59 vs		
				1.47±0.82; p=0.036). No significant difference was assessed in interleukin 6 (pg/ml), VEGF (pg/ml), total cholesterol and HDL-C.		
Deyab et al.		At baseline: Median RHI was 2.06 (1.45-2.94). Nine patients had ED with median RHI at 1.56 (1.45-1.64). At follow-up: In PsA with ED: Median RHI were respectively 1.67 and 1.80; p:ns). RHI improved from baseline (median RHI=1.56 to 6 weeks (RHI=1.67) and further to 6 months (RHI=1.80 with no statistical)	5)			

Table 1. (following) Overview of eligible studies on effects of TNF inhibitors on Subclinical Atherosclerosis and Endothelial Function in Patients with Psoriatic Arthritis

First author	Primary outcomes		Secondary outcomes			
	Carotid intima media thickness	Endothelial function	Carotid plaques	Inflammatory markers Lipid profile	Homeostatic and Fibrinolytic function	
Di-Minno	_	_	_	At 6 months of follow-up:	At 6 months of follow-up:	
Et al. 2014 [5]				27 (35.5%) of case group achieved MDA.	PAI-1 (p < 0.001), t-PA (p < 0.001),	
				Both ESR and CRP decreased in case group (% Δ -percentage changes of -22% for ESR and -15% for CRP; p<0.001).	fibrinogen (p < 0.001), D-dimer (p < 0.001), FVIII (p < 0.001), vWF (p <	
				Δ-percentage CRP reduction is correlated with improvements in these parameters: PAI-1 (r = 0.326, p = 0.004), PAI-1/t-PA	0.001), protein C p < 0.001), protein S (p < 0.001), and antithrombin (p = 0.031).	
				ratio (r= 0.283, p = 0.013), and D-dimer (r = 0.250, p = 0.029).	No significant changes were observed in control group (p > 0.05 for variables).	
					TNF-α blockers significantly reduce prothrombotic markers than DMAI (e.g., Δ-percentage fibrinogen: –15.2% vs. –1.3%; p < 0.001	
					Among TNF-α-treat patients, those achieving MDA had greater reductions in hemostatic/fibrinolytic variable than non-MDA patients (p < 0.05 for all).	
					TNF-α treatment independently predicted improvements in fibrinolytic (PAI-1, t-PA) and coagulatic (D-dimer, FVIII, vWI variables (all p < 0.01).	

PSA (Psoriatic Arthritis); TNF (Tumor Necrosis Factor); DMARDs (Disease-Modifying Antirheumatic Drugs); CIMT (Carotid Intima-Media Thickness); mean-max CCA (mean-maximum common carotid artery); mean-max bulb (min -maximum carotid bifurcation); ESR (Erythrocyte Sedimentation Rate); CRP (C-Reactive Protein); hs-CRP (High-Sensitivity C-Reactive Protein); OPG (Osteoprotegerin); LDL-C (Low-Density

Lipoprotein Cholesterol); HDL-C (High-Density Lipoprotein Cholesterol); FMD (Flow-Mediated Dilation); ED (Endothelial Dysfunction); RHI (Reactive Hyperemia Index); VEGF (Vascular Endothelial Growth Factor); PAI-1 (Plasminogen Activator Inhibitor-1); t-PA (Tissue Plasminogen Activator); vWF (von Willebrand Factor); FVIII (Factor VIII); and MDA (Minimal Disease Activity); FU1 (follow-up at 2 years); FU2 (follow-up at 5 years); max (maximum).

Endothelial Function

Three studies evaluated the effect of TNF-alpha inhibitors on endothelial function in patients with PsA, using either FMD or RHI as measures (8,9,11). No consistent significant improvement in endothelial function was observed. According to Deyab and al., RHI improved from baseline (median RHI=1.56) to 6 weeks (RHI=1.67) and further to 6 months (RHI=1.80) with no statistical significance (11).

Carotid Plaques

Only one study has assessed the effect of TNF-alpha inhibitors on the presence of carotid plaques in patients with PsA (7). Carotid plaques were found in 15.8% of patients treated with TNF-alpha inhibitors, compared to 40.4% in those receiving csDMARDs (p<0.0001). Atherosclerosis plaque presence was inversely correlated with the duration of TNF-alpha blocker exposure (r=-0.206, p=0.024) (7).

Effect of TNF-alpha inhibitors on atherosclerosis biomarkers

Inflammatory and Lipid Markers

Four studies evaluated inflammatory markers levels (7–10). In PsA patients treated with TNF-alpha inhibitors, both ESR and CRP showed significant reductions with delta percentage changes ranging between -22% for ESR and -15% for CRP (p<0.001) (7–10). Similarly, hs-CRP (p < 0.01) and OPG (p=0.011) levels decreased by the two-year mark and remained stable at five years of follow up (9). No changes were noted in IL-6 and VEGF levels (8,9). Only two studies assessed changes in lipid profiles (8,9). There was a decrease in LDL cholesterol (p=0.013) and in triglycerides (p=0.036) after two years of follow-up (Table 1).

Homeostatic and fibrinolytic markers

One study evaluated the impact of TNF-alpha inhibitors on homeostatic and fibrinolytic markers (10). After six months, patients with PsA who received TNF-alpha blockers showed significant improvement in both homeostatic and fibrinolytic markers compared to those on csDMARDs (p<0.001). Patients achieving minimal disease activity on TNF-alpha inhibitors had greater reductions in these markers (p<0.005) (10) (Table 1).

Discussion

This systematic review aimed to assess the effects of TNF-alpha inhibitors on atherosclerosis and endothelial dysfunction in PsA patients. Evaluating atherosclerosis-related measures is clinically relevant, as they provide valuable insights for predicting cardiovascular events such as stroke and myocardial infarction in this population. Overall, TNF-alpha inhibitors were found to reduce atherosclerosis progression, carotid plaque burden, and systemic inflammatory and lipid markers, although findings varied across studies. In contrast, no consistent evidence was found to support a beneficial effect of TNF-alpha inhibitors on endothelial dysfunction.

CIMT is widely recognized as a surrogate marker of subclinical atherosclerosis. Three studies evaluated the impact of TNF-alpha inhibitors on CIMT in patients with PsA (7–9). Di Minno et al. reported a significantly lower CIMT in patients receiving TNF-alpha inhibitors compared to those treated with csDMARDs, suggesting a protective vascular effect. Specifically, both mean-max CIMT values at the CCA and carotid bulb were significantly reduced in the TNF-alpha inhibitor group. Among TNF-alpha agents, adalimumab demonstrated the strongest association with reduced CIMT, followed by etanercept and infliximab (7). Moreover, a longer duration of TNF-alpha inhibitor therapy was inversely correlated with CIMT values, and treatment duration was a significant predictor of CIMT improvement in linear regression models.

These findings were first reported by Tam et al., who demonstrated that short-term TNF-alpha inhibition significantly slowed the progression of atherosclerosis in active PsA patients. Moreover, regression of maximum CIMT was observed only in those who continued long-

term TNF-alpha blockers, suggesting that sustained suppression of high-grade inflammation may potentially reverse early atherosclerotic changes (19).

In contrast, findings from Ramonda et al. and Ortolan et al. did not support a regression of CIMT over time. Both studies observed a progression of CIMT after two years of follow-up, even among patients treated with TNF-alpha inhibitors (8,9). This discrepancy may be attributable to differences in study design, baseline cardiovascular risk profiles, ultrasound sensitivity, treatment adherence, or concomitant therapies. Furthermore, the possibility of irreversible vascular changes once atherosclerosis is established could limit the impact of anti-TNF-alpha therapy on CIMT progression over longer timeframes. A cross-sectional study by Eder et al. demonstrated that the proportion of patients receiving TNF-alpha inhibitors was significantly higher in the high-risk atherosclerosis category, based on ultrasound assessment, compared to those in the intermediate and low-risk groups (20). These findings highlight the need for larger, prospective studies with standardized imaging protocols and longterm follow-up to better clarify the vascular effects of TNF-alpha inhibitors in PsA.

In the study by Di Minno et al. (7), carotid plaque prevalence was significantly lower in PsA patients treated with TNF-alpha inhibitors compared to those on csDMARDs (15.8% vs 40.4%, p<0.0001), supporting a potential protective effect of TNF-alpha inhibition on subclinical atherosclerosis. Moreover, an inverse correlation was observed between the duration of TNF-alpha inhibitor therapy and the presence of carotid plaques (r = -0.206, p = 0.024), indicating that prolonged exposure to these agents may contribute to reduced atherosclerotic burden. These findings support the hypothesis that TNF-alpha inhibitors may slow or even prevent plaque formation by dampening chronic systemic inflammation, a key driver of endothelial dysfunction and vascular remodeling in PsA.

Nevertheless, the impact of TNF-alpha inhibitors on endothelial function in PsA remains unconclusive as current evidence does not demonstrate consistent improvement. Three studies assessed endothelial function using either FMD or RHI (8,9,11). In all these studies, no statistically significant changes were observed during follow-up. One study reported no significant variation in FMD over two years of follow-up (8). Similarly, Ramonda et al. found that FMD remained unchanged after two years of TNF-alpha inhibitor therapy (5.3 ± 1.6% vs. $5.8 \pm 2.1\%$; p=ns) (9). In the study by Deyab et al., patients with endothelial dysfunction showed a gradual increase in RHI from baseline (median 1.56) to 6 weeks (1.67) and 6 months (1.80), but these changes were not statistically significant (11). These findings contrast with those of the systematic review by Brezinski et al., in which two out of three studies showed that TNF-alpha inhibitors improved endothelial function in patients with psoriasis and PsA (12).

The exact mechanisms underlying the potential protective effects of TNF-alpha inhibitors on endothelial dysfunction remain unclear. Patients with inflammatory arthritis (IA) have been shown to exhibit heightened

vascular inflammation compared to non-IA individuals with CVD, particularly involving increased TNF-alpha expression in the vascular media and adventitia (21,22). This deep vascular inflammation may influence the luminal compartment of the artery and alter endothelial cell phenotype, thereby contributing to endothelial dysfunction (23). Consequently, TNF-alpha inhibitors may theoretically improve endothelial function by attenuating vascular inflammation (24).

However, the observed differences in the effect of TNF-alpha inhibitors on endothelial function may, at least in part, be attributed to differences in patient populations, or other factors such as longer disease duration and treatment resistance. For instance, in the study by Deyab et al. (11), disease duration was negatively associated with changes in the RHI from baseline to 6 months, suggesting that endothelial function is more difficult to restore in patients with longstanding rheumatic disease. These findings underscore the importance of early antirheumatic intervention, not only to prevent joint destruction, but also to mitigate atherosclerotic risk. Nonetheless, larger studies are needed to confirm these observations.

Several studies included in this systematic review assessed the impact of TNF-alpha inhibitors on systemic inflammation and metabolic parameters in PsA patients. Four studies consistently reported significant reductions in inflammatory markers such as ESR and CRP (7–10). Additionally, hs-CRP and OPG levels significantly decreased by the two-year mark and remained stable at five years of follow-up, suggesting a sustained anti-inflammatory effect (9).

Although baseline OPG levels correlated with mean-CIMT, they remained slightly elevated compared to the general population at the end of the study. Given that OPG is an independent risk factor for carotid atherosclerosis progression and cardiovascular events (25,26), it may play a role in vascular remodeling in PsA (27). When combined with other biomarkers, OPG appears to be a valuable tool for monitoring vascular risk in PsA patients (28). However, no significant changes were observed in IL-6 or VEGF levels (8,9), indicating that the anti-inflammatory response may not be uniform across all cytokines and angiogenic markers.

Only two studies investigated changes in lipid profiles, showing a modest but significant decrease in LDL cholesterol and triglyceride levels after two years of treatment (8,9). In the literature, data on the behavior of metabolic biomarkers during anti-TNF-alpha treatment remain inconsistent. While some studies suggest that achieving minimal disease activity is associated with lower triglyceride levels and higher HDL cholesterol (29), others have reported increases in triglycerides and total cholesterol (30). These findings support the hypothesis that TNF-alpha inhibitors may exert favorable metabolic effects in addition to their anti-inflammatory properties, which could contribute to a reduction in cardiovascular risk.

Chronic inflammation induces a prothrombotic state by disrupting the balance between fibrinolysis and

coagulation (31). The effects of TNF-alpha inhibitors on homeostatic and fibrinolytic markers in PsA patients were assessed in one study (10). After six months of treatment, those receiving TNF-alpha blockers demonstrated significant improvements in these markers compared to patients on csDMARDs (p<0.001). Notably, patients who achieved minimal disease activity exhibited even greater reductions (p<0.005), suggesting a potential link between clinical disease control and cardiovascular risk modulation.

This systematic review has several limitations that should be acknowledged. First, the number of eligible studies was relatively small. The exclusion of non-English publications may have led to the omission of relevant data. Second, most of the included studies had limited sample sizes, which may reduce the generalizability of the findings. Third, there was considerable heterogeneity across studies in terms of design, follow-up duration, types of TNF-alpha inhibitors, outcome measures, and imaging modalities, making direct comparisons and synthesis of results challenging. Third, most studies were observational, with a lack of RCTs, thereby increasing the risk of selection bias and confounding. Furthermore, not all studies accounted for traditional cardiovascular risk factors or concomitant therapies, which may have influenced the outcomes. Lastly, given the small number of studies and variability in reported results, conducting a meta-analysis was not feasible.

This systematic review highlights the potential vascular benefits of TNF-alpha inhibitors in patients with PsA. These agents may reduce subclinical atherosclerosis, as evidenced by improvements in CIMT and reduced carotid plaque burden, and consistently lower systemic inflammatory markers. However, their impact on endothelial function remains unconclusive, with inconsistent findings across studies. The favorable effects on lipid metabolism and coagulation parameters suggest a broader cardiovascular protective role. Nevertheless, the current evidence is limited by small sample sizes and methodological heterogeneity. Larger, prospective, and controlled studies are needed to better define the cardiovascular effects of TNF-alpha inhibitors in PsA, particularly regarding endothelial function and long-term cardiovascular outcomes.

REFERENCES

- Winchester R, FitzGerald O. The many faces of psoriatic arthritis: their genetic determinism. Rheumatology (Oxford). 2020 Mar 1;59(Suppl 1):i4–9.
- Zheng Z, Guo Q, Ma D, Wang X, Zhang C, Wang H, et al. Related Risk Factors and Treatment Management of Psoriatic Arthritis Complicated With Cardiovascular Disease. Front Cardiovasc Med. 2022;9:835439.
- Wierzbowska-Drabik K, Lesiak A, Skibińska M, Niedźwiedź M, Kasprzak JD, Narbutt J. Psoriasis and Atherosclerosis-Skin, Joints, and Cardiovascular Story of Two Plaques in Relation to the Treatment with Biologics. Int J Mol Sci. 2021 Sep 27;22(19):10402.
- Ramonda R, Lo Nigro A, Modesti V, Nalotto L, Musacchio E, laccarino L, et al. Atherosclerosis in psoriatic arthritis. Autoimmun Rev. 2011 Oct;10(12):773–8.
- 5. Yang ZS, Lin NN, Li L, Li Y. The Effect of TNF Inhibitors on

- Cardiovascular Events in Psoriasis and Psoriatic Arthritis: an Updated Meta-Analysis. Clin Rev Allergy Immunol. 2016 Oct;51(2):240–7.
- Nair S, Singh Kahlon S, Sikandar R, Peddemul A, Tejovath S, Hassan D, et al. Tumor Necrosis Factor-Alpha Inhibitors and Cardiovascular Risk in Rheumatoid Arthritis: A Systematic Review. Cureus. 2022 Jun;14(6):e26430.
- Di Minno MND, Iervolino S, Peluso R, Scarpa R, Di Minno G, CaRRDs study group. Carotid intima-media thickness in psoriatic arthritis: differences between tumor necrosis factor-α blockers and traditional disease-modifying antirheumatic drugs. Arterioscler Thromb Vasc Biol. 2011 Mar;31(3):705–12.
- Ortolan A, Ramonda R, Lorenzin M, Pesavento R, Spinazzè A, Felicetti M, et al. Subclinical atherosclerosis evolution during 5 years of anti-TNF-alpha treatment in psoriatic arthritis patients. Clin Exp Rheumatol. 2021;39(1):158–61.
- Ramonda R, Puato M, Punzi L, Rattazzi M, Zanon M, Balbi G, et al. Atherosclerosis progression in psoriatic arthritis patients despite the treatment with tumor necrosis factor-alpha blockers: a two-year prospective observational study. Joint Bone Spine. 2014 Oct;81(5):421–5.
- Di Minno MND, Iervolino S, Peluso R, Di Minno A, Ambrosino P, Scarpa R, et al. Hemostatic and fibrinolytic changes are related to inflammatory conditions in patients with psoriatic arthritis--effect of different treatments. J Rheumatol. 2014 Apr;41(4):714–22.
- 11. Deyab G, Hokstad I, Whist JE, Smastuen MC, Agewall S, Lyberg T, et al. Methotrexate and anti-tumor necrosis factor treatment improves endothelial function in patients with inflammatory arthritis. Arthritis Res Ther. 2017 Oct 17;19(1):232.
- 12. Brezinski EA, Follansbee MR, Armstrong EJ, Armstrong AW. Endothelial dysfunction and the effects of TNF inhibitors on the endothelium in psoriasis and psoriatic arthritis: a systematic review. Curr Pharm Des. 2014;20(4):513–28.
- Makhlouf Y, Boussaa H, Bettaieb H, Fazaa A, Dergaa I, Boudokhane M, et al. Effect of TNF alpha inhibitors on atherosclerosis in psoriatic arthritis patients: a systematic review protocol. Tunis med. 2025 Aug 22;103(8):5595.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. 2021 Mar 29 [cited 2025 Jun 27]; Available from: https://www.bmj.com/content/372/bmj.n71
- Moher D, Hopewell S, Schulz KF, Montori V, Gøtzsche PC, Devereaux PJ, et al. CONSORT 2010 explanation and elaboration: updated guidelines for reporting parallel group randomised trials. BMJ. 2010 Mar 23;340:c869.
- Slim K, Nini E, Forestier D, Kwiatkowski F, Panis Y, Chipponi J. Methodological index for non-randomized studies (minors): development and validation of a new instrument. ANZ J Surg. 2003 Sep;73(9):712–6.
- 17. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019 Aug 28;366:I4898.
- GA Wells, B Shea, D O'Connell, J Peterson, V Welch, M Losos, P Tugwell. The Newcastle-OttawaScale (NOS) for Assessing the Quality of Non-Randomised Studies in Meta-Analyses.
- Tam LS, Li EK, Shang Q, Tomlinson B, Li M, Leung YY, et al. Tumour necrosis factor alpha blockade is associated with sustained regression of carotid intima-media thickness for patients with active psoriatic arthritis: a 2-year pilot study. Ann Rheum Dis. 2011 Apr;70(4):705–6.
- 20. Eder L, Chandran V, Gladman DD. The Framingham Risk Score underestimates the extent of subclinical atherosclerosis in patients with psoriatic disease. Annals of the Rheumatic Diseases. 2014 Nov 1;73(11):1990–6.
- Ahmed A, Hollan I, Curran SA, Kitson SM, Riggio MP, Mikkelsen K, et al. Brief Report: Proatherogenic Cytokine Microenvironment in the Aortic Adventitia of Patients With Rheumatoid Arthritis. Arthritis Rheumatol. 2016 Jun;68(6):1361–6.
- 22. Shelef MA, Sokolove J, Lahey LJ, Wagner CA, Sackmann EK, Warner TF, et al. Peptidylarginine deiminase 4 contributes to tumor necrosis factor α -induced inflammatory arthritis. Arthritis Rheumatol. 2014 Jun;66(6):1482–91.

- 23. Savoia C, Sada L, Zezza L, Pucci L, Lauri FM, Befani A, et al. Vascular inflammation and endothelial dysfunction in experimental hypertension. Int J Hypertens. 2011;2011:281240.
- Yang X, Chang Y, Wei W. Endothelial Dysfunction and Inflammation: Immunity in Rheumatoid Arthritis. Mediators Inflamm. 2016;2016:6813016.
- 25. Vik A, Mathiesen EB, Brox J, Wilsgaard T, Njølstad I, Jørgensen L, et al. Relation between serum osteoprotegerin and carotid intima media thickness in a general population the Tromsø Study. Journal of Thrombosis and Haemostasis. 2010 Oct 1;8(10):2133–9.
- Chiu YG, Shao T, Feng C, Mensah KA, Thullen M, Schwarz EM, et al. CD16 (FcRgammallI) as a potential marker of osteoclast precursors in psoriatic arthritis. Arthritis Res Ther. 2010;12(1):R14.
- Rattazzi M, Faggin E, Galliazzo S, Puato M, Caberlotto L, Scannapieco G, et al. Osteoprotegerin levels are increased in patients with venous thromboembolic disease. J Thromb Haemost. 2012 Jun;10(6):1183–5.
- Ramonda R, Modesti V, Ortolan A, Scanu A, Bassi N, Oliviero F, et al. Serological markers in psoriatic arthritis: promising tools. Exp Biol Med (Maywood). 2013 Dec;238(12):1431–6.
- Costa L, Caso F, Atteno M, Del Puente A, Darda MA, Caso P, et al. Impact of 24-month treatment with etanercept, adalimumab, or methotrexate on metabolic syndrome components in a cohort of 210 psoriatic arthritis patients. Clin Rheumatol. 2014 Jun;33(6):833–9.
- 30. Hassan S, Milman U, Feld J, Eder L, Lavi I, Cohen S, et al. Effects of anti-TNF- α treatment on lipid profile in rheumatic diseases: an analytical cohort study. Arthritis Res Ther. 2016 Nov 10;18(1):261.
- 31. Medcalf RL. Fibrinolysis, inflammation, and regulation of the plasminogen activating system. J Thromb Haemost. 2007 Jul;5 Suppl 1:132–42.