

LA TUNISIE MEDICALE

Special issue: Septembre 2025

Integrating Organ, Environmental, and Mental Health Impacts Meta-analysis & systematic reviews

- Continuing versus withholding renin angiotensin aldosterone system antagonists before noncardiac surgery: A systematic review and meta-analysis
- The effect of Ambient heat exposure early in pregnancy on the frequency of congenital heart defects:

 A systematic review and meta-analysis
- The Effect of Inotropes in Patients with Advanced Heart Failure: A Meta-Analysis of Randomized Trials
- Effect of Paracetamol on Blood Pressure: A Systematic Review
- Effects of Heated Tobacco Products compared to Conventional Cigarettes on Cardiovascular System:

 A Systematic Review
- Efficacy and Safety of Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2i) in Cardiac Amyloidosis: A Systematic Review
- Cardiovascular risk and JAK inhibitor for the treatment of spondyloarthritis: A systematic review
- Long working hours and the risk of ischemic cardiac death: A systematic review and meta-analysis
- Cardiovascular and pulmonary response in Internet gaming disorder: A systematic review
- Cardiac Phenotypes and Endophenotypes in Schizophrenia: A systematic Review
- The Effects of TNF-alpha Inhibitors on Subclinical Atherosclerosis and Endothelial Function in Patients with Psoriatic Arthritis: A Systematic Review

Continuing versus Withholding Renin-Angiotensin-Aldosterone System Antagonists Before Noncardiac Surgery: A Systematic Review and Meta-Analysis

Poursuite versus arrêt des antagonistes du système rénine-angiotensine-aldostérone en préopératoire de chirurgie non cardiaque : Revue systématique et méta-analyse

Mohamed Aziz Daghmouri¹, Faten Haddad², Emna Kammoun³, Fethi Jebali⁴, Heithem Jeddou^{5,6}, Mohamed Ali Chaouch⁷

- 1. Department of Anesthesiology, Montreuil Intercommunal Hospital Center, France
- 2. Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine of Tunis, Mongi Slim Teaching Hospital, University of Tunis El Manar, Tunis, Tunisia
- 3. Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine of Tunis, Mongi Slim Teaching Hospital, University of Tunis El Manar, Tunis. Tunisia
- 4. Department of Anesthesiology B, Monastir Teaching Hospital, University of Monastir, Monastir, Tunisia
- 5. Department of Hepatobiliary and Digestive Surgery, University Hospital, Rennes 1 University, Rennes, France
- 6. Inserm, EHESP, Irset (Institut de recherche en santé, environnement et travail) UMR \$ 1085, Rennes 1 University, Rennes, France
- 7. Department of Visceral and Digestive Surgery, Monastir University Hospital, Monastir, Tunisia

ABSTRACT

Background: It remains unclear whether to continue or withdraw angiotensin receptor blockers (ARBs) and angiotensin-converting enzyme inhibitors (ACEI) before noncardiac surgery to reduce perioperative morbidity. This systematic review and meta-analysis aimed to analyze the consequences of continuing ARB or ACEI in the incidence of intraoperative hypotension and postoperative complications.

Methods: This systematic review and meta-analysis followed the PRISMA 2020 guidelines and was registered in the PROSPERO database. We conducted a comprehensive search in several bibliographic databases for studies comparing continuing versus withholding renin angiotensin aldosterone system antagonists before noncardiac surgery. Primary outcomes included the incidence of intraoperative hypotension, while secondary outcomes covered the intraoperative use of the vasoactive agent, the incidence of severe hypotension, intraoperative and postoperative hypertension, the incidence of acute kidney injury (AKI), 30-day postoperative all-cause mortality, and the incidence of major cardiocerebral events (MACCE).

Results: Five randomized controlled trials, three nonrandomized controlled trials, and four retrospective case-control studies were included that involved 50184 patients. Meta-analysis revealed that continuing ACEI or ARBs before surgery increased the incidence of intraoperative hypotension (OR = 1.96, 95%CI [1.30, 2.96] p=0.001). Heterogeneity was substantial across studies but was significantly reduced in subgroup analyses. Furthermore, the use of vasoactive agents and the incidence of severe hypotension were significantly higher in the continuing group. No significant differences in intraoperative hypertension and the incidence of AKI and MACCE at 30 days after the operation.

Conclusions: Continued ACEI or ARBs before non-cardiac surgery increases the incidence of intraoperative hypotension, without reducing the incidence of both AKI and MACCE postoperatively. More research is necessary to explore the appropriate perioperative management of ACE-I and ARB

Keywords: angiotensin receptor blockers, angiotensin-converting enzyme inhibitors, noncardiac surgery, intraoperative hypotension

Résumé

Introduction: La nécessité de poursuivre ou d'interrompre le traitement par antagonistes des récepteurs de l'angiotensine (ARA) et inhibiteurs de l'enzyme de conversion de l'angiotensine (IEC) avant une intervention chirurgicale non cardiaque afin de réduire la morbidité péri-opératoire reste incertaine. Cette revue systématique et méta-analyse visait à analyser les conséquences de la poursuite du traitement par ARA ou IEC sur l'incidence de l'hypotension peropératoire et des complications postopératoires.

Méthodes: Cette revue systématique et méta-analyse a suivi les recommandations PRISMA 2020 et a été enregistrée dans la base de données PROSPERO. Nous avons effectué une recherche exhaustive dans plusieurs bases de données bibliographiques afin d'identifier des études comparant la poursuite ou l'arrêt du traitement par ARA avant une intervention chirurgicale non cardiaque. Le critère de jugement principal était l'incidence de l'hypotension peropératoire, tandis que les critères d'évaluation secondaires étaient l'utilisation peropératoire de l'agent vasoactif, l'incidence de l'hypotension sévère, l'hypertension peropératoire et postopératoire, l'incidence de l'insuffisance rénale aiguë (IRA), la mortalité toutes causes confondues à 30 jours postopératoires et l'incidence des événements cardio-cérébraux majeurs (ECCM).

Correspondance

Faten Haddad

Department of Anesthesiology and Critical Care Medicine, Faculty of Medicine of Tunis, Mongi Slim Teaching Hospital, University of Tunis El Manar, Tunis, Tunisia

Email: Faten.haddad@fmt.utm.tn

LA TUNISIE MEDICALE-2025; Vol 103 (09): 1146-1156

DOI: 10.62438/tunismed.v103i9.6236

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) which permits non-commercial use production, reproduction and distribution of the work without further permission, provided the original author and source are credited.

Résultats: Cinq essais contrôlés randomisés, trois essais contrôlés non randomisés et quatre études cas-témoins rétrospectives ont été inclus, portant sur 50 184 patients. Une méta-analyse a révélé que la poursuite du traitement par IEC ou ARA II avant la chirurgie augmentait l'incidence d'hypotension peropératoire (OR = 1,96, IC à 95 % [1,30, 2,96], p = 0,001). L'hétérogénéité était importante entre les études, mais était significativement réduite dans les analyses de sous-groupes. De plus, l'utilisation d'agents vasoactifs et l'incidence d'hypotension sévère étaient significativement plus élevées dans le groupe poursuivant le traitement. Aucune différence significative n'a été observée concernant l'hypertension peropératoire et l'incidence d'IRA et d'ECCM à 30 jours après l'opération.

Conclusions: La poursuite du traitement par IEC ou ARA II avant une chirurgie non cardiaque augmente l'incidence d'hypotension peropératoire, sans réduire l'incidence d'IRA et d'ECCM en postopératoire. Des recherches supplémentaires sont nécessaires pour explorer la prise en charge périopératoire appropriée des IEC et des ARA II.

Mots clés: Antagonistes des récepteurs aux angiotensines, inhibiteurs de l'enzyme de conversion de l'angiotensine, chirurgie non cardiaque, hypotension peropératoire.

INTRODUCTION

The Renin-angiotensin-aldosterone system inhibitor (RAAS) is a widely used treatment. Approximately onethird of surgical patients are on antihypertensive drugs annually, particularly RAAS inhibitors(1,2). However, evidence supporting the use or discontinuation of angiotensin receptor blockers (ARB) and angiotensinconverting enzyme inhibitors (ACEI) on the day of surgery is still lacking. Perioperative use of ACEIs and ARBs has been associated with early post-induction hypotension requiring the use of vasopressors under general anesthesia (3,4). This can result in acute renal injury, myocardial injury, or stroke as postoperative complications. However, the potential association between perioperative ACEI / ARB and major morbidity has not been elucidated (5-8). Furthermore, the continuation of ACE-I / ARB in the perioperative period may also be associated with improved outcomes in vascular surgical patients who have sustained a perioperative myocardial infarction (9). Consequently, in this meta-analysis we aimed to study the incidence of intraoperative and postoperative hemodynamic instability in patients treated with RAAS inhibitors undergoing noncardiac surgery, settled by the incidence of hypotension, hypertension, use of vasoactive agents, hospital length of stay (LOS), acute kidney injury (AKI), 30-day postoperative all-cause mortality, and incidence of major cardio-cerebral events (MACCE).

METHODS

This systematic review and meta-analysis follows the 2020 Preferred Reporting Items for Systematic Review and Meta-analysis (PRISMA) Guidelines (10) and was checked according to the AMSTAR 2 (Assessing the methodological quality of systematic reviews) guidelines (11). The protocol is registered in the PROSPERO database (ID: CRD42024519162). and described in a previously published article (12).

Bibliographic sources

We conducted an electronic search of the relevant literature and limited our search to data published until June 1, 2024. We did not use language restrictions. We sought trials in the United States National Library of Medicine, the Cochrane Database of Systematic Reviews (CDSR), and the Cochrane Central Register of Controlled

Trials (CENTRAL), Embase, National Institutes of Health PubMed/MEDLINE, Web of Science and Google Scholar databases. The MEDLINE and Embase strategies were run simultaneously as a multifile search in Ovid, and the results were duplicated using the Ovid duplication tool. We used the following keywords: 'angiotensin converting enzyme inhibitors ACEIs", "angiotensinconverting enzyme inhibitors ACEI', 'renin-angiotensin system inhibitor", "renin-angiotensin-aldosterone system inhibitor', 'continuing', 'withholding', 'preoperative' and "non-cardiac surgery". We manually checked the reference list of included trials to identify additional studies. Additionally, we searched for several clinical trial registries (ClinicalTrial.gov, Current Controlled Trials, Australian New Zealand Clinical Trials Registry (www. actr.org.au), Prospero registration, and the University Hospital Medical Information Network Clinical Trials Registry (www.umin.ac.jp/ctr) to identify ongoing trials.

Study selection

Two authors performed independent and blinded record screening. Disagreements were resolved by discussion after consulting a third member of the review team. The full texts of all selected studies were then selected according to predefined inclusion and exclusion criteria. The included studies were case-control studies, cohort studies, non-randomized controlled trials, and randomized controlled trials (RCT). Only articles published in peer-reviewed journals were considered. Data from noncomparative studies, review articles, editorial letters, abstracts only, comments, and case series (fewer than ten cases) were excluded.

Assessment of Risk of bias

The Cochrane tool for bias assessment was used to assess the risk of bias in RCTs (RoB2) (13). We evaluated bias in five distinct domains (A. randomization process, B. deviations from intended interventions, C. bias in the measurement of outcome, D. bias to missing outcome data, and E. bias in selecting the reported results). Within each domain, one or more signaling questions lead to judgments of "low risk of bias," "some concerns," or "high risk of bias". Regarding controlled clinical trials, the Newcastle-Ottawa Scale (NOS) was used.

Data extraction and outcomes

Data, including the first author's name, year of publication, country, type of study, age, sex (female / male), population, sample size (continuing group versus withholding group), angiotensin system inhibitors, outcomes, and duration of follow-up. We conducted our search based on the Population, Intervention, Comparator and Outcome (PICO) approach. In case of unclear bias domains or missing primary outcomes information, authors were contacted by email.

Population: adult patients (aged ≥ 18 years), who were chronically using ACEIs or ARBs chronically due to chronic hypertension, who underwent scheduled or emergency noncardiac surgery.

Intervention: Continue to receive ACEIs or ARBs to the day of surgery (< 12 hours preoperatively)

Control group: Patients who did not receive these treatments on the day of surgery (> 12 hours preoperatively)

Outcomes: The primary outcome was the incidence of intraoperative hypotension. Secondary outcomes were intraoperative use of vasoactive agent (incidence, dose of ephedrine (mg) and dose of phenylephrine (ng)), incidence of severe hypotension, hospital stay (LOS), intraoperative and postoperative hypertension, incidence of acute kidney injury (AKI), 30-day postoperative all-cause mortality and incidence of major cardiocerebral events (MACCE).

Statistical analysis

We used the RevMan 5.4 statistical package from the Cochrane Collaboration for meta-analysis (14). We selected the mean difference (MD) as an effective measure for continuous data. Odds ratios (OR) with 95% confidence intervals (95% CI) were calculated for dichotomous variables. The random-effects model was used and the significance threshold was fixed at 0.05. When the mean and standard deviation (SD) were not reported, they were estimated from the range (R) and median based on the formula described by Hozo et al. (15).

Assessment of Heterogeneity

To assess heterogeneity, three strategies were used:

- 1. The Cochrane Chi² test (Q test), Tau2, which is the variance of true effects, and the 95% predictive interval (index of dispersion) to estimate the degree of heterogeneity (16). We calculate the predictive interval using a comprehensive meta-analysis prediction interval. Values less than 25% indicated no heterogeneity, between 25% and 50% indicated moderate heterogeneity, and more than 50% indicated substantial heterogeneity.
- 2. Graphical exploration with funnel plots (17).
- 3. Sensitivity analysis with a subgroup analysis when applicable (18). Subgroup analyzes were carried out, if feasible, to assess potential sources of heterogeneity.

RESULTS

Bibliographic Research

The literature search identified 2538 articles, of which 21 were selected for full-text review, and finally 12 studies (1,19-29). The detailed PRISMA flow diagram is presented in Figure 1. Nine articles were excluded for the following reasons: two studies were protocols (30,31), two studies were systematic reviews and meta-analyses (32,33), four studies included nonhypertensive patients in the control group (34-37), and one study evaluated inadequate outcomes (38). The demographic data of the retained studies are presented in Table 1. The risk of bias assessment using the RoB 2 and Newcastle-Ottawa Scale (NOS) is presented in Table 2. A total of 50184 patients (16292 patients in the continuing group (CG) versus 33892 patients in the withholding group (WG)) were included in this study. These studies were published from September 2000 to February 2024. Five studies were randomized controlled trials, three studies were nonrandomized controlled trials, and four studies were retrospective case-control.

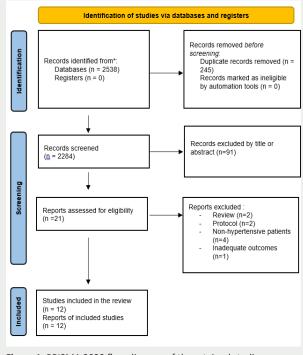


Figure 1. PRISMA 2020 flow diagram of the retained studies

Incidence of intraoperative hypotension

Eight studies reported data on the incidence of intraoperative hypotension (1,19-23,25,29). It was reported in 1304 out of 4122 patients in the continuing group (31.6%) and 482 out of 1770 patients in the withholding group (27.2%). The pooled results showed that the incidence of intraoperative hypotension was significantly higher in the continuing group but with high heterogeneity (OR = 1.96, 95% CI [1.30, 2.96] p=0.001; Tau²=0.18) (Figure 2).

Authors (year)	Country	Type of study	Age	Gender (female/ male)	Population	Sample size (CG vs WG)	Angiotensin system inhibitors	Outcomes	Follow- up
1-Takeuchi et al (2022)	Japan	RCT	69.35± 8.7	96/10	ASA II patients aged 20 – 80 years with primary hypertension undergoing minor abdominal or urological surgery under general anesthesia	106 patients. (54 vs 52)	ARB/CCB combination tablets	-incidence of hypotension (SBP<80 mmhg) -vasoactive agents	3 days
2-Zainudheen et al (2017)	Australia	Retrospective case-control		151/137	Adult patients undergoing total knee or hip replacement, receiving a single blood pressure lowering agent	258 patients. (129 vs 129)	ACE-I or ARB	-incidence of hypotension (SBP<90 mmHg) -perioperative AKI	3 days
3-Comfere et al (2005)	USA	No-RCT	66.5± 4.25	117/147	Adult patients undergoing elective surgery	267 patients. (144 vs 123)	ACE-I or ARB	-incidence of hypotension (SBP<85 mmHg) -incidence of severe hypotension	24 hour
4-Drake et al (2018)	UK	No-RCT	70.2± 10.45	332/617	Adult patients undergoing elective major abdominal surgery	949 patients. (376 vs 573)	ACE-I or ARB	-postoperative AKI -mortality	30 days
5-Roshanov et al (2016)	Canada	No-RCT	68.8± 10.8	2389/ 2413	Patients > 45 years undergoing noncardiac surgery	4802 patients. (3557 vs 1245)	ACE-I or ARB	-mortality -cardiovascular complications -incidence of hypotension (SBP<90 mmHg)	30 days
6-Calloway et al (2014)	USA	Retrospective case-control		35/25	Patients aged 60 to 75 years who underwent elective orthopedic surgery under neuraxial anesthesia	60 patients (37 vs 23)	ACE-I or ARB	-incidence of hypotension (SBP<85 mmHg) -vasopressor requirements; -postoperative complications	-
7-Ackland et al (2024)	UK	RCT	71.5± 2.5	126/134	ASA III patients aged > 60 years undergoing elective non-cardiac surgery	262 patients. (132 vs 130)	ACE-I or ARB	-myocardial injury; -incidence of hypotension	30 days
8-Yoon et al (2021)	USA	Retrospective case-control	65± 11	165/184	Patients aged 18 to 80 years undergoing non-cardiac surgery	349 patients. (153 vs 196)	ACE-I or ARB	-intraoperative hypotension; -vasopressor requirements	24 hours
9-Bertrand et al (2001)	France	RCT	68± 12	7/30	Patients undergoing elective major vascular surgery	37 patients (19 vs 18)	Angiotensin II antagonists	-intraoperative hypotension	-
10-Twersky et al (2013)	USA	RCT	61.5± 15.75	347/215	ASA II or III patients undergoing ambulatory and same-day surgery	562 patients. (264 vs 262)	ACE-I or ARB	-incidence of hypertension (SBP>140 mmhg) -incidence of hypotension (SBP<90 mmhg)	24 hour
11-Shirmer et al (2007)	Germany	RCT	65.5± 12	51/49	Patients undergoing ear, nose, and throat surgery and ophthalmology	100 patients (50 vs 50)	ACE-I or ARB	-Incidence of hypotension	-
12-Kim et al (2024)	•	Retrospective cohort study		22864/ 19568	Patients aged > 18 years undergoing elective non- cardiac surgery	42432 patients (11377 vs 31055)	ACE-I or ARB	-Cardiovascular complications -Mortality	30 days

CG: continuing group; WG: withholding group; RCT: randomized controlled trial; ARB: angiotensin receptor blockers; CCB: calcium channel blockers; ACEI: angiotensin converting enzyme inhibitors; SBP: systolic blood pressure; AKI: acute kidney injury

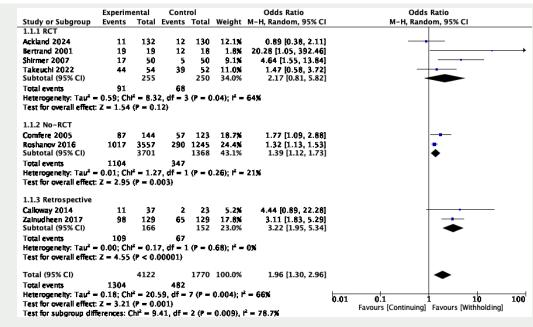


Figure 2. Forest plot of intraoperative hypotension

Subgroup analyzes demonstrated that within the RCT subgroup, continuing ACEIs or ARB did not significantly impact the incidence of intraoperative hypotension, but heterogeneity remained substantial (OR = 2.17, 95% CI [0.81, 5.82], p=0.12; Tau²=0.59). In contrast, in the non-RCT and retrospective groups, the continued ACEI or ARB markedly increased the incidence of intraoperative hypotension, and heterogeneity was reduced, (OR = 1.39, 95% CI [1.12, 1.73] p=0.003; Tau²=0.01) and (OR = 3.22, 95% CI [1.95, 5.34] p < 0.001; Tau²=0), respectively. Secondary outcomes:

Intraoperative Vasoactive Agents

Six studies evaluated data on the use of intraoperative vasoactive agents (20-22,24,25,27). It was used in 3073

out of 11859 patients in the continuing group (25.9%) versus 2390 out of 31544 patients in the withholding group (7.6%). They showed that in the continuation group, the use of vasoactive agents was significantly higher (OR = 2.33, 95% CI [1.28, 4.24] p=0.006; Tau²=0.42) (Figure 3A). The dose of ephedrine was reported in five studies (20,21,23,24,26). The pooled results showed that the mean dose of ephedrine was higher in the continuing group compared to the withholding group (MD = 3.66, 95% CI [0.78, 6.55], p=0.01; Tau²=9.47) (Figure 3B). The dose of phenylephrine was reported in only four studies (18,20,23,24). They showed that there was no significant difference between both groups, but heterogeneity was high (MD = -60.27, 95% CI [-138.66, 18.13], p=0.13; Tau²=3145.11).

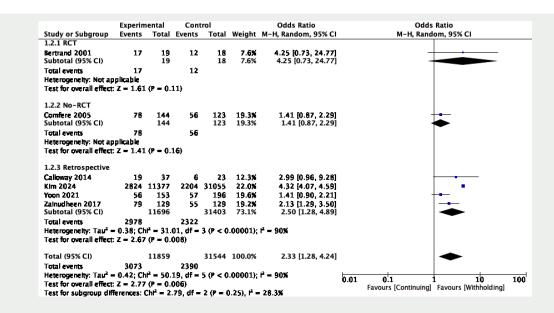
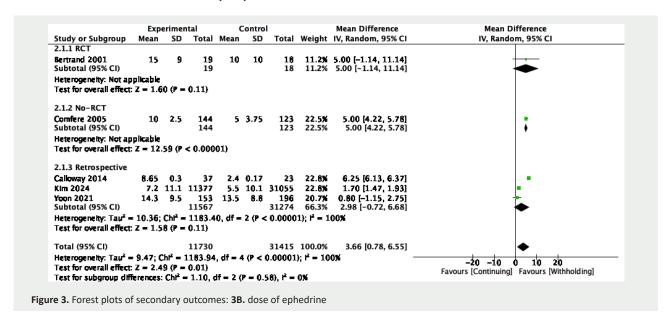



Figure 3. Forest plots of secondary outcomes: 3A. Intraoperative use of vasoactive agents

Incidence of severe hypotension

Only three studies reported data on the incidence of severe hypotension (19,21,22). It was reported in 65 of 235 patients in the continuing group and 41 of

198 patients in the withholding group. The combined results showed that the continuation of ACEI or ARB was significantly associated with a higher incidence of severe hypotension (OR = 2.03, 95% CI [1.04, 3.97], p=0.04; Tau²=0.09) (Figure 3C).

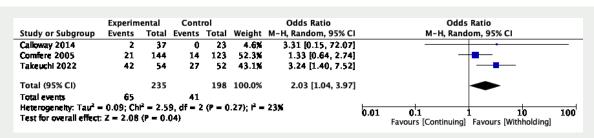


Figure 3. Forest plots of secondary outcomes: 3C. Incidence of severe hypotension

LOS of the hospital

Four studies evaluated data on hospital LOS (19-22). It was reported in 364 patients in the continuation group versus 327 patients in the withholding group. There was no significant difference between the two groups (MD = -0.29, 95% CI [-0.91, 0.34], p=0.37; Tau²=0.0.33).

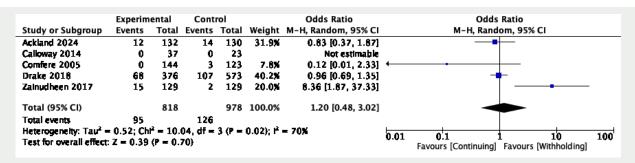
Intraoperative and postoperative hypertension

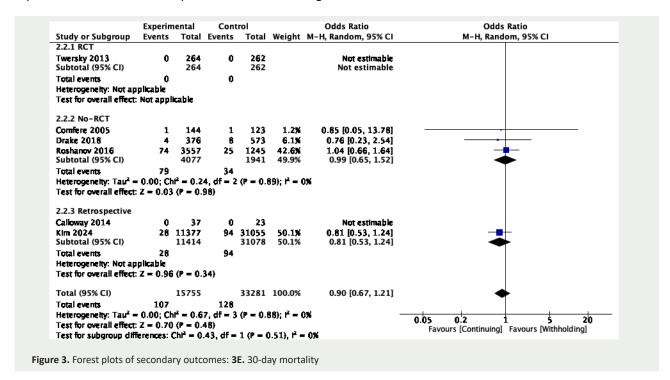
Five studies reported data on the incidence of intraoperative and postoperative hypertension (19,23,25-27). It was reported in 2336 out of 11846 patients in the

continuing group versus 2673 out of 31517 patients in the withholding group. The pooled results did not show significant differences between the two groups (OR = 0.82, 95% CI [0.33, 2.04], p=0.68; Tau²=0.89).

Incidence of postoperative AKI

Five studies reported data on the incidence of postoperative AKI (20-23,28). It was reported in 95 of 818 patients in the continuing group and 126 of 978 patients in the withholding group. The pooled results did not show significant differences between the group (OR = 1.20, 95% CI [0.48, 3.02], p=0.39, Tau²=0.52) (Figure 3D).




Figure 3. Forest plots of secondary outcomes: 3D. Incidence of acute postoperative kidney injury

Daghmouri & al. Continuing versus withholding RAAS antagonists before noncardiac surgery

30-day postoperative mortality

Six studies evaluated data on the incidence of 30-day postoperative causes of mortality (1,21,22,26-28). It was reported in 107 out of 15755 patients in the continuing

group and 128 out of 33281 patients in the withholding group. There was no significant difference between the two groups, with low heterogeneity (OR = 0.90, 95% CI [0.67, 1.21], p=0.48; Tau²=0) (Figure 3E).

Incidence of postoperative MACCE

Six studies reported data on the incidence of postoperative MACCE (1,20-22,26,27). It was reported in 921 out of 11543 patients in the continuing group and 2181 out

of 31207 patients in the withholding group. The pooled results did not show significant differences between the two groups, with low heterogeneity (OR = 1.13, 95% CI [0.92, 1.38], p=0.24; Tau²=0.02) (Figure 3F).

Figure 3. Forest plots of secondary outcomes: 3F. Incidence of postoperative MACCE

Discussion

Our study aimed to analyze the incidence of intraoperative and postoperative hemodynamic instability and its consequences in patients undergoing noncardiac surgery treated with RAAS inhibitors. Taking into account all the included studies, we showed that the incidence of intraoperative hypotension was significantly higher in the continuing group, but with high heterogeneity (OR = 1.96, 95% CI [1.30, 2.96] p=0.001; Tau²=0.18). There were no differences in the incidence of intraoperative hypotension in the analysis (OR = 2.17, 95% CI [0.81, 5.82], p=0.12; Tau²=0.59). Consequently, continuing treatment with RAAS inhibitors was associated with a higher risk of severe hypotension and increased use of vasopressors. There was no difference in the incidence of hypertension, AKI, 30-day mortality, and new MACCE. Intraoperative hypotension has been widely described in patients undergoing RAAS inhibitor treatment. Anesthesia is known to induce sympatholytic effects, and the maintenance of arterial blood pressure depends on the regulation of RAAS during the intra-operative period (7,39). The common belief is that stopping RAAS inhibitors before surgery prevents intraoperative hypotension, but this is mainly based on observational studies or small samples of RCT trials (40). The subgroup analysis of RCT included in our study did not demonstrate an increase in the risk of hypotension. Two previous meta-analyses found an increased risk of intraoperative hypotension, but no subgroup analysis including only RCTs was performed (41,42). Furthermore, the SPACE trial, a robust and recent RCT study that established the duration of cessation prior to surgery with respect to the pharmacokinetics of each drug, was not included in those meta-analyses (43). Our findings provide interesting details on the evidence of hypotension associated with continued RAAS inhibitors before surgery. However, studies included suffered high heterogeneity in both patients, including protocol of anesthesia and scheduled surgery: orthopedic surgery under general or neuraxial anesthesia (44,45), elective abdominal and urology surgery under general anesthesia (7,43,46-49), or major vascular surgery under general anesthesia (50).

In our study, we showed an increased risk of intraoperative severe intraoperative hypotension and use of vasopressor in the continuing group. Severe hypotension was reported in three studies, including Two of them did not find an increased risk (7,44). The third was a comparison of a combination treatment of RAAS inhibitor and calcium channel blocker (CCB) versus no treatment, and significant hypotension was defined as an SBP < 80 mmHg (47). Regarding the use of vasopressor, only one study specified a protocol for the use of vasopressor (44), which could have led to an overrepresentation of the necessity of hemodynamic support in the continuing group in other studies (7,45,50-52). On the contrary, we found no increased risk of mortality, new MACCE, or AKI at 30 days during the postoperative period. In the same way, MACCE had a different definition between studies: increase in the non-high-sensitivity cardiac troponin T value (cTnT) (48,51), raising of troponin and new

ST-T wave or Q wave on electrocardiogram (44,45,53-55), congestive cardiac failure, cardiac arrhythmias, cerebrovascular events confirmed on brain imaging (45), or non-specified (56). The definition of AKI was based on serum creatinine elevation, with a threshold issued from the RIFLE or KDIGO classification, which is quite comparable (57). Although there is evidence for an increased risk of ischemic events up to 30 days after surgery (58), the end of follow-up at discharge from the operative room or post-anesthesia care unit and before 72 h in four studies may have underestimated the incidence of MACCE and AKI (7,44,45,56). No protective role has been demonstrated.

Several limitations have been identified in the current meta-analysis. First, the results suffer from a high heterogeneity between the studies, including a wide range of surgeries and patients. We could not measure the incidence of hypotension depending on the protocol of anesthesia used (general anesthesia vs. locoregional anesthesia), which could have provided interesting data regarding the continuation or discontinuation of RAAS inhibitors. The large variations in the definition of hypotension and the absence of a standard protocol for the use could have influenced the study findings. As a result, it is appropriate to classify the results as exploratory.

Conclusions

We may consider that the absence of a protective role and the possible existence of an increase in perioperative complications related to hypotension induced by ACE inhibitors should lead to a case-by-case approach, depending on the molecule used and the planned surgery. More large-scale randomized controlled trials are needed to confirm the results.

REFERENCES

- Roshanov PS, Rochwerg B, Patel A, Salehian O, Duceppe E, Belley-Côté EP, et al. Withholding versus Continuing Angiotensinconverting Enzyme Inhibitors or Angiotensin II Receptor Blockers before Noncardiac Surgery: An Analysis of the Vascular events In noncardiac Surgery patients cOhort evaluation Prospective Cohort. Anesthesiology. 2017 Jan;126(1):16–27.
- Halvorsen S, Mehilli J, Cassese S, Hall TS, Abdelhamid M, Barbato E, et al. 2022 ESC Guidelines on cardiovascular assessment and management of patients undergoing non-cardiac surgery. Eur Heart J. 2022 Oct 14;43(39):3826–924.
- Salim F, Khan F, Nasir M, Ali R, Iqbal A, Raza A. Frequency of Intraoperative Hypotension After the Induction of Anesthesia in Hypertensive Patients with Preoperative Angiotensin-converting Enzyme Inhibitors. Cureus. 12(1):e6614.
- Rosenman DJ, McDonald FS, Ebbert JO, Erwin PJ, LaBella M, Montori VM. Clinical consequences of withholding versus administering renin-angiotensin-aldosterone system antagonists in the preoperative period. J Hosp Med. 2008 Jul;3(4):319–25.
- Coriat P, Richer C, Douraki T, Gomez C, Hendricks K, Giudicelli JF, et al. Influence of chronic angiotensin-converting enzyme inhibition on anesthetic induction. Anesthesiology. 1994 Aug;81(2):299–307.
- Brabant SM, Bertrand M, Eyraud D, Darmon PL, Coriat P. The hemodynamic effects of anesthetic induction in vascular surgical patients chronically treated with angiotensin II receptor

Daghmouri & al. Continuing versus withholding RAAS antagonists before noncardiac surgery

- Surgery? Anesthesia & Analgesia. 2001 Jan;92(1):26-30.
- antagonists. Anesth Analg. 1999 Dec;89(6):1388-92.
- Comfere T, Sprung J, Kumar MM, Draper M, Wilson DP, Williams BA, et al. Angiotensin system inhibitors in a general surgical population. Anesth Analg. 2005 Mar;100(3):636–44.
- Pigott DW, Nagle C, Allman K, Westaby S, Evans RD. Effect of omitting regular ACE inhibitor medication before cardiac surgery on haemodynamic variables and vasoactive drug requirements. Br J Anaesth. 1999 Nov;83(5):715–20.
- Foucrier A, Rodseth R, Aissaoui M, Ibanes C, Goarin JP, Landais P, et al. The long-term impact of early cardiovascular therapy intensification for postoperative troponin elevation after major vascular surgery. Anesth Analg. 2014 Nov;119(5):1053–63.
- Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: updated guidance and exemplars for reporting systematic reviews. BMJ. 2021 Mar 29;372:n160.
- Shea BJ, Reeves BC, Wells G, Thuku M, Hamel C, Moran J, et al. AMSTAR 2: a critical appraisal tool for systematic reviews that include randomised or non-randomised studies of healthcare interventions, or both. bmj. 2017;358.
- Chaouch MA, Haddad F, Kammoun E, Clautiaux H, Daghmouri MA. Continuing versus Withholding renin-angiotensin-aldosterone system antagonists before non-cardiac surgery: A protocol of a systematic review and meta-analysis. Tunis Med. 2025;103(8): 978-81
- Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 2019 Aug 28;366:14898.
- Cochrane Handbook for Systematic Reviews of Interventions [Internet]. [cited 2020 Jun 15]. Available from: https:// handbook-5-1.cochrane.org/
- Hozo SP, Djulbegovic B, Hozo I. Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology. 2005 Apr 20;5(1):13.
- 16. Higgins JP, Thompson SG, Deeks JJ, Altman DG. Measuring inconsistency in meta-analyses. Bmj. 2003;327(7414):557–60.
- 17. Egger M, Smith GD, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. Bmj. 1997;315(7109):629–34.
- 18. Copas J, Shi JQ. Meta-analysis, funnel plots and sensitivity analysis. Biostatistics. 2000;1(3):247–62.
- Takeuchi K, Hayashida M, Kudoh O, Niimi N, Kataoka K, Kakemizu-Watanabe M, et al. Continuing versus withholding angiotensin receptor blocker (ARB)/calcium channel blocker (CCB) combination tablets during perioperative periods in patients undergoing minor surgery: a single-blinded randomized controlled trial. J Anesth. 2022 Jun;36(3):374–82.
- Zainudheen A, Scott IA, Caney X. Association of renin angiotensin antagonists with adverse perioperative events in patients undergoing elective orthopaedic surgery: a case–control study. Internal Medicine Journal. 2017 Sep;47(9):999–1005.
- Comfere T, Sprung J, Kumar MM, Draper M, Wilson DP, Williams BA, et al. Angiotensin System Inhibitors in a General Surgical Population. Anesthesia & Analgesia. 2005 Mar;100(3):636–44.
- Calloway JJ, Memtsoudis SG, Krauser DG, Ma Y, Russell LA, Goodman SM. Hemodynamic effects of angiotensin inhibitors in elderly hypertensives undergoing total knee arthroplasty under regional anesthesia. Journal of the American Society of Hypertension. 2014 Sep;8(9):644–51.
- Ackland GL, Patel A, Abbott TEF, Begum S, Dias P, Crane DR, et al. Discontinuation vs. continuation of renin–angiotensin system inhibition before non-cardiac surgery: the SPACE trial. European Heart Journal. 2024 Apr 1;45(13):1146–55.
- 24. Yoon U, Setren A, Chen A, Nguyen T, Torjman M, Kennedy T. Continuation of Angiotensin-Converting Enzyme Inhibitors on the Day of Surgery Is Not Associated With Increased Risk of Hypotension Upon Induction of General Anesthesia in Elective Noncardiac Surgeries. Journal of Cardiothoracic and Vascular Anesthesia. 2021 Feb;35(2):508–13.
- Bertrand M, Godet G, Meersschaert K, Brun L, Salcedo E, Coriat
 P. Should the Angiotensin II Antagonists be Discontinued Before

- Twersky RS, Goel V, Narayan P, Weedon J. The Risk of Hypertension after Preoperative Discontinuation of Angiotensin-Converting Enzyme Inhibitors or Angiotensin Receptor Antagonists in Ambulatory and Same-Day Admission Patients. Anesthesia & Analgesia. 2014 May;118(5):938–44.
- Kim J, Lee S, Choi J, Ryu DK, Woo S, Park M. Effect of continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery on myocardial injury after noncardiac surgery: A retrospective cohort study. Journal of Clinical Anesthesia. 2024 Jun;94:111401.
- 28. STARSurg Collaborative. Association between peri-operative angiotensin-converting enzyme inhibitors and angiotensin-2 receptor blockers and acute kidney injury in major elective non-cardiac surgery: a multicentre, prospective cohort study. Anaesthesia. 2018 Oct;73(10):1214–22.
- 29. Schirmer U, Schürmann W. Zur perioperativen Gabe von ACE-Hemmern. Anaesthesist. 2007 Jun;56(6):557–61.
- Legrand M, Futier E, Leone M, Deniau B, Mebazaa A, Plaud B, et al. Impact of renin-angiotensin system inhibitors continuation versus discontinuation on outcome after major surgery: protocol of a multicenter randomized, controlled trial (STOP-or-NOT trial). Trials. 2019 Mar 5;20(1):160.
- 31. Misra S, Parida S, Sahajanandan R, Behera BK, Senthilnathan M, Mariappan R, et al. The effect of continuing versus withholding angiotensin-converting enzyme inhibitors/angiotensin II receptor blockers on mortality and major adverse cardiovascular events in hypertensive patients undergoing elective non-cardiac surgery: study protocol for a multi-centric open-label randomised controlled trial. Trials. 2022 Aug 17;23(1):670.
- Hollmann C, Fernandes NL, Biccard BM. A Systematic Review of Outcomes Associated With Withholding or Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Before Noncardiac Surgery. Anesth Analg. 2018 Sep;127(3):678–87.
- Ling Q, Gu Y, Chen J, Chen Y, Shi Y, Zhao G, et al. Consequences of continuing renin angiotensin aldosterone system antagonists in the preoperative period: a systematic review and meta-analysis. BMC Anesthesiol. 2018 Feb 26;18(1):26.
- Salvetti G, Di Salvo C, Ceccarini G, Abramo A, Fierabracci P, Magno S, et al. Chronic Renin–Angiotensin System (RAS) Blockade May Not Induce Hypotension During Anaesthesia for Bariatric Surgery. OBES SURG. 2016 Jun;26(6):1303–7.
- 35. Trentman TL, Fassett SL, Thomas JK, Noble BN, Renfree KJ, Hattrup SJ. More hypotension in patients taking antihypertensives preoperatively during shoulder surgery in the beach chair position. Can J Anesth/J Can Anesth. 2011 Nov;58(11):993–1000.
- Gurunathan U, Roe A, Milligan C, Hay K, Ravichandran G, Chawla G. Preoperative Renin-Angiotensin System Antagonists Intake and Blood Pressure Responses During Ambulatory Surgical Procedures: A Prospective Cohort Study. Anesthesia & Analgesia. 2024 Apr;138(4):763–74.
- 37. Slagelse C, Gammelager H, Iversen LH, Liu KD, Sørensen HTT, Christiansen CF. Renin-angiotensin system blocker use and the risk of acute kidney injury after colorectal cancer surgery: a population-based cohort study. BMJ Open. 2019 Nov 21;9(11):e032964.
- Rajgopal R, Rajan S, Sapru K, Paul J. Effect of pre-operative discontinuation of angiotensin-converting enzyme inhibitors or angiotensin II receptor antagonists on intra-operative arterial pressures after induction of general anesthesia. Anesth Essays Res. 2014;8(1):32.
- Daghmouri MA, Akremi S, Chaouch MA, Mesbahi M, Amouri N, Jaoua H, et al. Bilateral Erector Spinae Plane Block for Postoperative Analgesia in Laparoscopic Cholecystectomy: A Systematic Review and Meta-analysis of Randomized Controlled Trials. Pain Practice. 2021;21(3):357–65.
- Mets B. To Stop or Not? Anesthesia & Analgesia. 2015 Jun;120(6):1413.
- Ling Q, Gu Y, Chen J, Chen Y, Shi Y, Zhao G, et al. Consequences of continuing renin angiotensin aldosterone system antagonists in the preoperative period: a systematic review and meta-analysis. BMC Anesthesiol. 2018 Feb 26;18(1):26.

- Hollmann C, Fernandes NL, Biccard BM. A Systematic Review of Outcomes Associated With Withholding or Continuing Angiotensin-Converting Enzyme Inhibitors and Angiotensin Receptor Blockers Before Noncardiac Surgery. Anesth Analg. 2018 Sep;127(3):678–87.
- 43. Ackland GL, Patel A, Abbott TEF, Begum S, Dias P, Crane DR, et al. Discontinuation vs. continuation of renin-angiotensin system inhibition before non-cardiac surgery: the SPACE trial. Eur Heart J. 2024 Apr 1;45(13):1146–55.
- 44. Calloway JJ, Memtsoudis SG, Krauser DG, Ma Y, Russell LA, Goodman SM. Hemodynamic effects of angiotensin inhibitors in elderly hypertensives undergoing total knee arthroplasty under regional anesthesia. J Am Soc Hypertens. 2014 Sep;8(9):644–51.
- Zainudheen A, Scott IA, Caney X. Association of renin angiotensin antagonists with adverse perioperative events in patients undergoing elective orthopaedic surgery: a case-control study. Intern Med J. 2017 Sep;47(9):999–1005.
- Schirmer U, Schürmann W. [Preoperative administration of angiotensin-converting enzyme inhibitors]. Anaesthesist. 2007 Jun;56(6):557–61.
- 47. Takeuchi K, Hayashida M, Kudoh O, Niimi N, Kataoka K, Kakemizu-Watanabe M, et al. Continuing versus withholding angiotensin receptor blocker (ARB)/calcium channel blocker (CCB) combination tablets during perioperative periods in patients undergoing minor surgery: a single-blinded randomized controlled trial. J Anesth. 2022;36(3):374–82.
- 48. Roshanov PS, Rochwerg B, Patel A, Salehian O, Duceppe E, Belley-Côté EP, et al. Withholding versus Continuing Angiotensin-converting Enzyme Inhibitors or Angiotensin II Receptor Blockers before Noncardiac Surgery: An Analysis of the Vascular events In noncardiac Surgery patlents cOhort evaluation Prospective Cohort. Anesthesiology. 2017 Jan;126(1):16–27.
- 49. Chaouch MAMA, Daghmouri MA, Boutron M christine, Ferraz J marc, Usai S, Soubrane O, et al. Ketamine as a component of multimodal analgesia for pain management in bariatric surgery: A systematic review and meta-analysis of randomized controlled trials. Annals of Medicine and Surgery. 2022;103783.
- Bertrand M, Godet G, Meersschaert K, Brun L, Salcedo E, Coriat P. Should the angiotensin II antagonists be discontinued before surgery? Anesth Analg. 2001 Jan;92(1):26–30.
- 51. Kim J, Lee S, Choi J, Ryu DK, Woo S, Park M. Effect of continuing angiotensin-converting enzyme inhibitors or angiotensin II receptor blockers on the day of surgery on myocardial injury after noncardiac surgery: A retrospective cohort study. J Clin Anesth. 2024 Jun;94:111401.
- 52. Yoon U, Setren A, Chen A, Nguyen T, Torjman M, Kennedy T. Continuation of Angiotensin-Converting Enzyme Inhibitors on the Day of Surgery Is Not Associated With Increased Risk of Hypotension Upon Induction of General Anesthesia in Elective Noncardiac Surgeries. Journal of Cardiothoracic and Vascular Anesthesia. 2021 Feb 1;35(2):508–13.
- Daghmouri M, Chaouch MA, Dépret F, Cattan P, Plaud B, Deniau B. Two-lung ventilation in video-assisted thoracoscopic esophagectomy in prone position: A systematic review. Anaesthesia Critical Care & Pain Medicine. 2022 Jul 1;41:101134.
- 54. Daghmouri MA, Chaouch MA, Yang W, Akremi S, Jaoua H, Fadhel KB, et al. Probiotics in bariatric surgery ensure greater lipids and glycemic profile with no effect on anthropometric measurements and inflammatory markers: A systematic review and meta-analysis of RCT. Surgery Open Digestive Advance. 2022 Sep 1;7:100061.
- Daghmouri MA, Chaouch MA, Oueslati M, Rebai L, Oweira H. Regional techniques for pain management following laparoscopic elective colonic resection: A systematic review. Annals of Medicine and Surgery. 2021 Dec 1;72:103124.
- 56. Twersky RS, Goel V, Narayan P, Weedon J. The risk of hypertension after preoperative discontinuation of angiotensin-converting enzyme inhibitors or angiotensin receptor antagonists in ambulatory and same-day admission patients. Anesth Analg. 2014 May;118(5):938–44.
- 57. KDIGO Clinical Practice Guideline for Acute Kidney Injury 2012. Kidney International Supplements. 2012 Mar;2(1):1.
- 58. Wong GY, Warner DO, Schroeder DR, Offord KP, Warner MA,

Maxson PM, et al. Risk of surgery and anesthesia for ischemic stroke. Anesthesiology. 2000 Feb;92(2):425–32.