

LA TUNISIE MEDICALE

Special issue: Septembre 2025

Integrating Organ, Environmental, and Mental Health Impacts Meta-analysis & systematic reviews

- Continuing versus withholding renin angiotensin aldosterone system antagonists before noncardiac surgery: A systematic review and meta-analysis
- The effect of Ambient heat exposure early in pregnancy on the frequency of congenital heart defects:

 A systematic review and meta-analysis
- The Effect of Inotropes in Patients with Advanced Heart Failure: A Meta-Analysis of Randomized Trials
- Effect of Paracetamol on Blood Pressure: A Systematic Review
- Effects of Heated Tobacco Products compared to Conventional Cigarettes on Cardiovascular System:

 A Systematic Review
- Efficacy and Safety of Sodium-Glucose Cotransporter 2 Inhibitors (SGLT2i) in Cardiac Amyloidosis: A Systematic Review
- Cardiovascular risk and JAK inhibitor for the treatment of spondyloarthritis: A systematic review
- Long working hours and the risk of ischemic cardiac death: A systematic review and meta-analysis
- Cardiovascular and pulmonary response in Internet gaming disorder: A systematic review
- Cardiac Phenotypes and Endophenotypes in Schizophrenia: A systematic Review
- The Effects of TNF-alpha Inhibitors on Subclinical Atherosclerosis and Endothelial Function in Patients with Psoriatic Arthritis: A Systematic Review

Cardiovascular risk and JAK inhibitor for the treatment of spondyloarthritis: A systematic review

Risque cardiovasculaire associé à l'utilisation des anti-JAK au cours des spondylarthrites: Revue systématique

Rim Dhahri¹, Lobna Ben Ammar¹, Soumaya Boussaid², Syrine Bellakhal³, Imène Gharsallah¹, Hela Sahli², Mohamed Hedi Douggui³

- 1. University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunis, Tunisia, department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia.
- 2. University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunis, Tunisia, department of Rheumatology, La Rabta Universitary Hospital
- 3. University of Tunis El Manar, Faculty of Medicine of Tunis, 1007, Tunis, Tunisia, Internal Medicine department, Internal Forces Security Hospital, Rue Taher Ben Achour, 2070, La Marsa-Tunisia

ARSTRACT

Objective: The aim of this review is to evaluate cardiovascular safety of Janus Kinas (JAK) inhibitors in patients with spondyloarthritis (SpA).

Methods: Applying the PRISMA methodology, we searched PubMed, Embase, and the Cochrane Library databases using the following search terms: Janus kinase inhibitors, spondyloarthritis, cardiac risk and major adverse cardiovascular event. Randomized controlled trials that reported Major Adverse Cardiovascular Events (MACE) in patients treated with JAK inhibitors for SpA were included.

Results: Ten radomized controlled trials conducted between 2017 and 2024 were analyzed, encompassing 2671 patients with an active SpA and treated with JAK inhibitors (tofacitinib, upadacitinib and filgotinib). The follow-up duration ranged from 12 to 104 weeks. Only three MACE were reported with upadacitinib (15 mg/day): one non-fatal haemorrhagic stroke after 52 weeks of treatment in a patient with a history of smoking and a myocardial infarction and a cerebral hemorrhage after 104 weeks in the same population, corresponding to an incidence rate of 0.3 per 100 patient-years (95% CI: 0.0–1.1).

Conclusions: This systemic review highlights the safety of JAK inhibitors according to MACE occurrence in patients with SpA when compared to placebo. These results need to be interpreted with caution regarding the limited long-term data and small sample sizes in clinical trials. Long-term studies are needed to clarify these risks.

Key words: Major adverse cardiovascular event, Cardiovascular risk, Spondyloarthritis, Janus Kinase Inhibitors, systematic review

KÉSUMÉ

Objectif: L'objectif de cette revue est d'évaluer la sécurité cardiovasculaire des inhibiteurs du Janus Kinas (JAK) chez les patients atteints de spondyloarthrite (SpA).

Méthodes: En appliquant la méthodologie PRISMA, nous avons effectué une recherche dans les bases de données PubMed, Embase et la Cochrane Library en utilisant les termes de recherche suivants : Inhibitors du Janus kinase, spondyloarthrite, risque cardiaque et événements cardiovasculaires indésirables majeurs. Les essais contrôlés randomisés ayant rapporté des événements cardiovasculaires indésirables majeurs (MACE) chez des patients traités par des inhibiteurs du JAK pour la spondyloarthrite ont été inclus.

Résultats: Dix essais contrôlés randomisés menés entre 2017 et 2024 ont été analysés, englobant 2671 patients atteints d'une SpA active et traités par des inhibiteurs de JAK (tofacitinib, upadacitinib et filgotinib). La durée du suivi allait de 12 à 104 semaines. Seuls trois MACE ont été rapportés avec l'upadacitinib (15 mg/jour): un accident vasculaire cérébral hémorragique non fatal après 52 semaines de traitement chez un patient ayant des antécédents de tabagisme et un infarctus du myocarde et une hémorrhagie cérébrale après 104 semaines dans la même population, ce qui correspond à un taux d'incidence de 0,3 pour 100 années-patients (IC à 95 % : 0,0-1,1).

Conclusion: Cette revue systémique met en évidence la sécurité des inhibiteurs de JAK en fonction de la survenue de MACE chez les patients atteints de SpA par rapport au placebo. Ces résultats doivent être interprétés avec prudence compte tenu du peu de données à long terme et de la petite taille des échantillons dans les essais cliniques. Des études à long terme sont nécessaires pour clarifier ces risques.

Mots-clés : Événement cardiovasculaire indésirable majeur, Risque cardiovasculaire, Spondyloarthrite, Inhibiteur du Janus Kinase, Revue systématique

Correspondance

Lobna Ben Ammar

University of Tunis El Manar, Faculty of Medicine of Tunis, Tunisia, department of Rheumatology, Military Hospital, 1007, Tunis, Tunisia. Email:lobna.b.ammar@gmail.com

LA TUNISIE MEDICALE-2025; Vol 103 (09): 1202-1209

DOI: 10.62438/tunismed.v103i9.6218

This article is distributed under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0) which permits non-commercial use production, reproduction and distribution of the work without further permission, provided the original author and source are credited.

INTRODUCTION

Spondyloarthritis (SpA) represents a heterogeneous group of chronic inflammatory rheumatic diseases, including ankylosing spondylitis (AS) and psoriatic arthritis (PsA), which predominantly affect the axial skeleton, peripheral joints, and entheses (1). These conditions are characterized by hallmark clinical features such as chronic inflammatory back pain, peripheral arthritis, enthesitis, and extraarticular manifestations, including uveitis, psoriasis, and inflammatory bowel disease. The progressive nature of SpA can lead to structural damage, impaired physical function, and diminished quality of life (2).

In recent years, Janus kinase (JAK) inhibitors, an emerging class of targeted synthetic disease-modifying antirheumatic drugs (tsDMARDs), have been introduced as a promising therapeutic option for patients with SpA, particularly those with an inadequate response or intolerance to conventional treatments such as non-steroidal anti-inflammatory drugs (NSAIDs), tumor necrosis factor (TNF) inhibitors, and interleukin (IL)-17 inhibitors (3–5). JAK inhibitors exert their effect by selectively blocking intracellular signaling pathways involved in the immune response, thereby reducing inflammation and disease activity (3).

While the cardiovascular safety profile of biologic DMARDs (6) and JAK inhibitors has been the focus of several largescale clinical trials and real-world studies in rheumatoid arthritis (RA) (7), concerns have been raised regarding their potential association with adverse cardiovascular outcomes, including major adverse cardiovascular events (MACE) (8,9), thromboembolic complications (10), and lipid profile alterations (11). However, data regarding the cardiovascular risks and benefits of JAK inhibitors in the specific context of SpA remain limited and inconclusive (12). Given the distinct pathophysiological mechanisms and demographic characteristics of SpA compared to RA, as well as the inherent cardiovascular risk associated with chronic inflammation in SpA, there is a critical need for robust, disease-specific evidence to guide clinicians in the safe and effective use of JAK inhibitors in this population. In this perspective, we conducted this study with the aim to systematically review papers dealing with this topic.

METHODS

This systematic review was conducted according to Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines (13). Predefined protocol was registered with PROSPERO (Registration No.CRD42024600570). and in La Tunisie Medicale journal (14).

Search strategy

Electronic databases including PubMed, Embase and Cochrane Library were searched and screened independently by two authors (DR. and LBA). In case of discordance, a discussion was made with BS. The final systematic search was conducted on December 12, 2024. Medical Subject Headings terms (MeSH) and

free-text terms were used as the search strategy for PubMed associating the combination of synonyms of "(supplementary materials). For Embase and Cochrane Library, the previous terms were searched in the article title, abstract, or keywords. All references cited in the selected literature were also scanned to identify other pertinent publications. Duplicate studies were removed and managed by Covidence.

Study selection

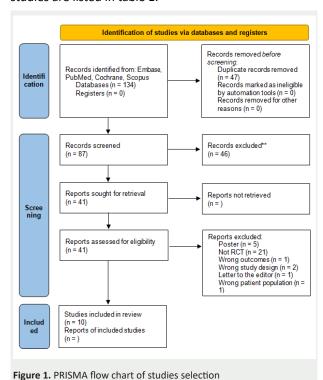
The eligible criteria for inclusion in the current systematic review were: i) randomized controlled trials, ii) patients above 18 years-old, diagnosed with ankylosing spondylitis (AS) according to the modified New York criteria for AS (1), or the 2009 ASAS classification criteria (15) and treated with Janus Kinase Inhibitors, iii) studies who reported cardiovascular events, such as Major Adverse Cardiovascular Event (MACE) and hypertension, and iiii) articles in English.

We excluded: 1) cohort studies, systematic review and meta-analysis, 2) animal studies, 3) publications not representing original research (i.e.; reviews, editorials, qualitative papers, case reports, and letters to editors), 4) Papers written in another language than English, 5) Studies without relevant cardiac data and outside the scope of JAK inhibitor treatment and 6) patients below 18 years-old or with pre-existing cardiovascular disease.

Data extraction

Two investigating authors (LBA. and DR) evaluated the quality and extracted the data of each article based on the CONsolidated Standarts Of Reporting Trials (CONSORT) scale specialized for assessing the quality of RCTs (16). The CONSORT scores of below 15, 15-20, and above 20 indicated low, medium and high-quality of studies, respectively. In case of uncertainty, a third investigator (BS) was consulted (supplementary materials).

The following information of each selected study were extracted: study data (year of publication, country, study design, number and mean age of included subjects, inclusion and exclusion criteria, and duration of the follow-up), population characteristics (Age, gender, disease duration and co morbidities) as well as intervention details (details of the JAK inhibitors used: type, dosage, duration of treatment).


Our main judgement criteria was the occurrence of MACE (composite of total death, myocardial infarction, coronary revascularization, stroke, and hospitalization because of heart failure). We also checked the occurrence of hypertension.

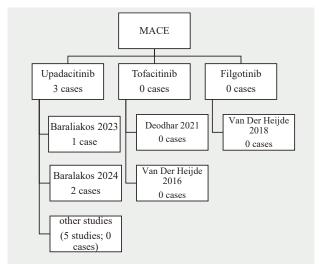
Risk of bias assessment

Two investigators (LBA. and DR) independently evaluated the risk of bias for each eligible RCT using the revised Cochrane 'Risk of bias' tool for randomised trials (RoB 2.0) (17). We categorized each eligible RCT into three categories: low, some concerns, or high risk of bias (supplementary materials).

RESULTS

The search results, presented in Figure 1, included 134 publications extracted from all databases. After excluding duplicates, 87 records were screened. Finally ten RCTs were included in the review (18-27). All the included studies are listed in table 1.

Ten RCTs evaluated the cardiovascular safety of Janus kinase (JAK) inhibitors in patients with axial spondyloarthritis (axSpA). They were conducted between 2017 (22) and 2024 (19) and included a total of 2,671 patients, with sample sizes ranging from 116 (24) to 409 (18,19) per study. Participants were consistently aged ≥18 years on average, although precise mean age values were not uniformly reported. All patients included had active radiographic ankylosing spondylitis (AS) or nonradiographic (nr-axSpA) with high BASDAI (≥4) and low back pain (≥4) scores, as well as an inadequate response to or intolerance of at least two NSAIDs. Most trials excluded prior exposure to JAKIs (18,19,21,22,27), and several excluded the use of biological disease-modifying antirheumatic drugs (bDMARDs) or total spinal ankylosis (21-23,26).


Study characteristics

All studies used standardised criteria (modified New York or ASAS 2009) to define axSpA (1,15). In the nraxSpA trial, objective signs of inflammation (MRI and/or elevated C-reactive protein (CRP)) were required for inclusion.

The follow-up duration ranged from 12 (24) to 104 weeks (19). While some studies focused on short-term outcomes (12–16 weeks) (22,24), others provided extensive safety data over one to two years (18,19,22,26).

Major Adverse Cardiovascular Events

In the ten RCTs, only three major adverse cardiovascular events (MACE) were reported, resumed in Figure 2.

Figure 2. MACE incidence in JAK inhibitor trials for axial spondyloarthritis

Baraliakos et al. (18) reported a non-fatal haemorrhagic stroke after 52 weeks of treatment with upadacitinib in a patient with a history of smoking. He reported, one year later, in a second study (18), two additional cases of MACE over 104 weeks in the same population (upadacitinib 15 mg/day), an acute ST elevation in a 38-year-old man and a cerebral hemorrhage at left basal ganglia in a 47-year-old man, corresponding to an incidence rate of 0.3 per 100 patient-years (95% CI: 0.0—1.1).

All other studies, including those evaluating tofacitinib (2 mg, 5 mg and 10 mg twice daily) (20,23) and filgotinib (200 mg/day) (24), reported no MACE. The only other cardiovascular adverse event was a single case of hypertension in the high-dose tofacitinib group (10 mg twice daily), reported by van der Heijde et al. in 2017 (23).

MACE risk according to JAK inhibitor molecule

Upadacitinib, the most frequently evaluated JAK inhibitor, was featured in six studies (18,19,21,22,25,26) involving 1,688 patients in total.

Tofacitinib was evaluated in two studies (21,23), involving 478 patients.

Filgotinib was evaluated in one study (24), involving 116 patients.

Upadacitinib:

Seven RCTs examined the efficacy and safety of upadacitinib at a dose of 15 mg per day (18,19,21,22,25-27). The longest follow-up periods (52 and 104 weeks) were conducted by Baraliakos et al. (2023, 2024) (18,19) and involved 409 patients from 22 countries. These studies reported three major adverse cardiac events (MACEs): one non-fatal haemorrhagic stroke after 52 weeks and a myocardial infarction and a cerebral hemorrhage after 104 weeks, representing an incidence rate of 0.3 per 100 patient-years (95% confidence interval [CI]: 0.0–1.1).

First author (ref) Year of publication	Study design/ Characteristics of the population studied	Inclusion and exclusion criteria	JAK inhibitor	Intervention	-	Cardiovascular outcome
Baraliakos et al 2023 [17]	RCT : 22 countries Total : 409 Continued on Upadacitinib 206 Switched from placebo to Upadacitinib 203	- Age ≥ 18 years - Meeting modified New York criteria for AS - Active AS (BASDAI score of ≥ 4 - Patient's assessment of total back pain score of ≥ 4) - Inadequate response to ≥ 2 NSAIDs and a bDMARD - Prior exposure to two bDMARDs was allowed for ≤ 30% of patients - Prior exposure to a JAK inhibitor was not permitted	Upadacitinib	Upadacitinib 15mg per day	52 weeks	1 case of adjusted MACE: non-fatal haemorrhagic stroke (history of smoking)
Baraliakos et al 2024 [18]	RCT : 22 countries Total : 409 Continued on Upadacitinib 206 Switched from placebo to Upadacitinib 203	- Age ≥ 18 years - Meeting modified New York criteria for AS - Active AS (BASDAI score of ≥ 4 and - Patient's assessment of total back pain score of ≥ 4) - Inadequate response to ≥ 2 NSAIDs and a bDMARD - Prior exposure to two bDMARDs was allowed for ≤ 30% of patients - Prior exposure to a JAK inhibitor was not permitted	Upadacitinib	Upadacitinib 15mg per day	104 weeks	2 case of adjusted MACE: one acute ST elevation (myocardial infarction) and one cerebral hemorrhage at left basal ganglia E (E/100 [95% CI]) 2 (0.3 [0.0 , 1.1])
Deodhar et al 2021 [19]	RCT : 14 countries Total : 270 Tofacitinib 134 Placebo 136	- Age ≥ 18 years - Meeting modified New York criteria for AS - Active AS (BASDAI score ≥4 and NSAID inadequate response) - Excluded if treated with targeted synthetic DMARDs or current bDMARDs - Prior bDMARD treatment allowed if discontinued for ≥4 weeks	Tofacitinib	Tofacitinib 5mg twice a day vs placeb		No case of MACE
Deodhar et al 2022 [20]	RCT: 20 countries Total: 178 Continued on Upadacitinib 89 Switched from placebo to Upadacitinib 89	- Age ≥ 18 years - Meeting modified New York criteria for AS - Active AS (BASDAI score ≥4 and patient's assessment of back pain score of ≥ 4) and inadequate response to ≥2 NSAIDs or intolerance to or contraindication for NSAIDs - Prior exposure to JAK inhibitors or biologic DMARDs (such as tumor necrosis factor [TNF] inhibitors and interleukin-17A [IL-17A] inhibitors) were excluded - Patients with total spinal ankylosis were ineligible.	Upadacitinib	Upadacitinib 15mg	64 weeks	No case of MACE
Deodhar et al 2022 [21]	RCT : 23 countries Total : 314 Upadacitinib 156 Placebo 157	- Age ≥ 18 years - Non-radiographic axial spondyloarthritis meeting the 2009 ASAS classification criteria - Active disease (BASDAI and patient's assessment of total back pain score ≥4 and at least one objective sign of active inflammation at screening based on - MRI of the sacroiliac joints, high-sensitivity C-reactive protein greater than the upper limit of normal, or both) - Inadequate response to at least two NSAIDs or intolerance to or contraindication for NSAIDs - Prior exposure to two bDMARDs was allowed for for at least 20% but no more than 35% of patients - Exclusion included prior inflammatory arthritis other than axial spondyloarthritis - Previous treatment with a JAK inhibitor was also an exclusion criterion - Patients meeting modified New York criteria for ankylosing spondylitis were excluded - Patients who showed lack of efficacy for both a TNF inhibitor and IL-17 inhibitor were excluded from the study		Upadacitinib 15mg vs placebo	14 weeks	No case of MACE
Van der heijde 2016 [22]	RCT : total : 208 Tofacitinib 2mg 52 Tofacitinib 5mg 52 Tofacitinib 10mg 52 Placebo 136 51	- Age ≥18 years - Meting modified New York criteria for AS - Active disease r(BASDAI score ≥4 and back pain score ≥4) - Patients with normal CRP levels could be enrolled if	Tofacitinib	Tofacitinib 2mg or 5mg or 10 mg twice a day vs placebo	16 weeks	No case of MACE One case of hypertension with tofacitinib 10mg twice a day

First author (ref) Year of publication	Study design/ Characteristics of the population studied	Inclusion and exclusion criteria	JAK inhibitor	Intervention	•	Cardiovascular outcome
Van der heijde 2018 [23]	RCT : 7 countries	- Age ≥18 years - Meting modified New York criteria for AS - Active disease (BASDAI score ≥4 and back pain score ≥4, high-sensitivity C-reactive protein > 3·0 mg/l) - Inadequate response to two or more NSAIDs - Prior exposure to two bDMARDs was allowed for ≤ 30% of patients	Filgotinib	Filgotinib 200mg vs placebo	12 weeks	No case of MACE
	Total : 116					
	Filgotinib 58 Placebo 58					
Van der heijde 2019 [24]	RCT : 20 countries	- Age ≥ 18 years - Meeting modified New York criteria for AS - Active AS (BASDAI score ≥4 and patient's assessment of back pain score of ≥ 4) and inadequate response to ≥2 NSAIDs or intolerance to or contraindication for NSAIDs - Prior exposure to JAK inhibitors or biologic DMARDs (such as tumor necrosis factor [TNF] inhibitors and interleukin-17A [IL-17A] inhibitors) were excluded - Patients with total spinal ankylosis were ineligible.	Upadacitinib	Upadacitinib 15mg vs placebo	14 weeks	No case of MACE
	Total : 187					
	Upadacitinib 93					
	Placebo 94					
Van der heijde 2022 [25]	RCT : 20 countries	- Age ≥ 18 years - Meeting modified New York criteria for AS - Active AS (BASDAI score ≥4 and patient's assessment of back pain score of ≥ 4) and inadequate response to ≥2 NSAIDs or intolerance to or contraindication for NSAIDs - Prior exposure to JAK inhibitors or biologic DMARDs (such as tumor necrosis factor [TNF] inhibitors and interleukin-17A [IL-17A] inhibitors) were excluded - Patients with total spinal ankylosis were ineligible.		Upadacitinib 15mg	104 weeks	No case of MACE
	Total: 178					
	Continued on Upadacitinib 89					
	Switched from placebo to Upadacitinib 89					
Van der heijde 2022 [26]	RCT : 22 countries	 Meeting modified New York criteria for AS Active AS (BASDAI score of ≥ 4 and Patient's assessment of total back pain score of ≥ 4) 	Upadacitinib	Upadacitinib 15mg vs placebo	14 weeks	No case of MACE
	Totalal : 420					
	Upadacitinib 211					
	Placebo 209	 Inadequate response to ≥ 2 NSAIDs and a bDMARD Prior exposure to two bDMARDs was allowed for ≤ 30% of patients 				
		- Prior exposure to a JAK inhibitor was not permitted				

Four other RCTs using upadacitinib (Deodhar 2022; Van der Heijde 2019, 2022), lasting 14, 64 and 104 weeks, and involving populations ranging from 178 to 420 patients, reported no MACEs. One of these studies focused specifically on SpAax-nr and required the presence of objective inflammatory markers (MRI or CRP) for inclusion.

Tofacitinib:

Two RCTs evaluated tofacitinib at doses of 2 mg, 5 mg and 10 mg twice daily (21,23). In Deodhar et al., 270 patients received 5 mg twice daily for 16 weeks and no cardiovascular events occurred. In the dose-finding study conducted by van der Heijde et al. (23), 208 patients were randomised to receive one of three doses of tofacitinib or a placebo. No major adverse cardiovascular events (MACE) were reported, although one case of hypertension was observed in the 10 mg group.

Filgotinib:

The study by van der Heijde et al. (24) included 116 patients who were treated with 200 mg per day for 12 weeks. No cardiovascular events were reported.

Summary of cardiovascular safety

These results suggest that JAK inhibitors have a favourable cardiovascular safety profile in patients with axial SpA when administered under controlled conditions. Although upadacitinib was the only molecule associated with MACEs (n = 3), these events were rare and occurred in the context of the long-term extension setting. No MACE were observed with tofacitinib or filgotinib in trials lasting up to 16 weeks. However, it is important to note that most trials excluded patients with known cardiovascular risk factors, which limits the generalisability of these findings. Further real-world studies and long-term post-marketing surveillance are required to evaluate the cardiovascular safety of JAK inhibitors in wider, higher-risk axSpA patient groups.

Discussion

We performed a systematic review of ten RCTs including 2,671 patients to assess the cardiovascular risk of JAK inhibitors used for treating SpA patients. In summary, the analyses revealed that JAK inhibitors have a favorable

cardiovascular safety profile in patients with SpA. One of our analysis' strengths is that it includes only RCTs and a relatively large number of patients with SpA.

The majority of included studies on Tofacitinib, Filgotinib and Upadacitinib show overall a low risk of bias. The Van der Heijde 2017 study (23) stands out as having a high overall risk of bias, mainly due to concerns in the randomization process and outcome measurement.

Although our analysis indicates a positive cardiovascular safety profile of JAK inhibitors, these findings should be considered in light of the methodological limitations of the included studies. A more detailed analyze reveals wide variability in trial design and reporting. Specifically, follow-up duration varied widely, ranging from 12 weeks (23) in some studies to 104 weeks in others (18,25).

Given that short-term trials might miss long-term cardiovascular events; this variation is an important factor to take into account.

Furthermore, the studies differed in sample size, with some including as few as 116 patients, which limits the ability to detect rare events such as MACE.

Many trials also employed strict inclusion criteria. This selective enrolment may have minimized the observed adverse events, suggesting that the safety profile could differ in a real-world patient's population.

Chronic systemic inflammation is a key driver of accelerated atherosclerosis and increased pulmonary (28) and CV risk (29). Suppressing inflammation through "Treat to Target" strategies and DMARDs, including csDMARDs, bDMARDs, and JAK inhibitors, has demonstrably improved cardiovascular outcomes in patients with chronic inflammatory rheumatic diseases (30).

Anti-JAK drugs may cause an increase in total cholesterol, LDL-cholesterol and HDL cholesterol levels and apolipoproteins (Apo) A1 and ApoB. These lipid abnormalities are generally observed in the first few weeks of treatment and stabilize thereafter (31).

JAK enzymes, a part of the tyrosine kinase family enzymes, play a crucial role in various cell signalling pathways involved in inflammation, immunity and other physiological functions. By blocking these enzymes, anti-JAKs modulate a wide range of pro-inflammatory cytokines. Although this is beneficial for reducing inflammation, this "pan-JAK" inhibition could have consequences for organ function, including the cardiovascular system (32) Increased risk of thromboembolism is suggested by data from numerous clinical trials on JAK inhibitors. Among the many mechanisms potentially involved in the increased risk of thrombosis with JAK inhibitors, transendothelial leukocyte migration and the JAK-STAT signaling pathway have been particularly highlighted.(33)

The current recommendations for using Janus kinase (JAK) inhibitors in SpA position them as a significant therapeutic option, particularly for patients who have not adequately responded to or are intolerant of other treatments (34). While non-steroidal anti-inflammatory drugs (NSAIDs) remain the first-line pharmacological treatment, followed by biologic disease-modifying antirheumatic drugs (bDMARDs) like tumor necrosis factor inhibitors (TNFi) or interleukin-17 inhibitors (IL-17i), many patients still do

not achieve desired therapeutic goals (34).

EULAR include JAK inhibitors as an option for patients with an inadequate response or intolerance to NSAIDs (34). Furthermore, for patients who experience an inadequate response to their initial bDMARD, it is recommended to switch to another bDMARD or consider a JAK inhibitor (32). This addresses an unmet need for oral therapies with alternative mechanisms of action.

It's worth noting that the cardiovascular risk associated with anti-JAKs is significant in patients aged 65 and over, smokers (current or former), and those with other pre-existing cardiovascular risk factors (history of atherosclerotic cardiovascular disease, hypertension, etc.). For these patients, the use of anti-JAKs should be considered with caution. Regular monitoring of lipid parameters and vigilance for cardiovascular symptoms are recommended (32).

Conclusion:

This systematic review revealed that JAK inhibitors have a good cardiovascular safety profile in SpA patients, with a low incidence of major adverse cardiac events (MACE) reported in the included randomized controlled trials. However, these results should be interpreted with caution. Some of included studies mainly focused on patients with low baseline cardiovascular risk and were not designed to assess the long-term effects of these drugs.

Consequently, the observed safety profile cannot be generalized to patients in real life, particularly older people or those with significant pre-existing cardiovascular risk factors. Given these limitations, it is essential to conduct long-term observational studies and post-marketing surveillance to fully clarify the cardiovascular risk associated with JAK inhibitors in this population.

REFERENCES

- van der Linden S, Valkenburg HA, Cats A. Evaluation of diagnostic criteria for ankylosing spondylitis. A proposal for modification of the New York criteria. Arthritis Rheum. avr 1984;27(4):361-8.
- Boussaid S, Ben Majdouba M, Rekik S, Jammali S, Cheour E, Sahli H, et al. Poor work outcomes in patients with spondyloarthritis: causes, consequences, and solutions. Clin Rheumatol. 1 févr 2022;41(2):463-70.
- Akkoc N, Khan M. JAK Inhibitors for Axial Spondyloarthritis: what does the Future Hold? Curr Rheumatol Rep. 2021;23(6):34.
- Braun J, Kiltz U, Baraliakos X. Emerging therapies for the treatment of spondyloarthritides with focus on axial spondyloarthritis. Expert Opin Biol Ther. 1 févr 2023;23(2):195-206.
- Raychaudhuri S, Shah RJ, Raychaudhuri SK, Raychaudhuri SP. Janus kinase inhibitors for the treatment of psoriatic arthritis. Indian J Dermatol Venereol Leprol. 2024;90(2):186-91.
- Boussaid S, Dhahri R, Rahmouni S, Ceylan Hİ, Hassayoun M, Abbes M, et al. Impact of Biologic Drugs on Comorbidity Outcomes in Rheumatoid Arthritis: A Systematic Review. J Clin Med. janv 2025;14(13):4547.
- Harrington R, Harkins P, Conway R. Janus Kinase Inhibitors in Rheumatoid Arthritis: An Update on the Efficacy and Safety of Tofacitinib, Baricitinib and Upadacitinib. J Clin Med. 23 oct 2023;12(20):6690.
- Charles-Schoeman C, Choy E, McInnes IB, Mysler E, Nash P, Yamaoka K, et al. MACE and VTE Across Upadacitinib Clinical Trial Programs in Rheumatoid Arthritis, Psoriatic Arthritis, and Ankylosing Spondylitis. Arthritis Rheumatol. 2022;74((Charles-

- Schoeman C.) Division of Rheumatology, University of California, Los Angeles, Santa Monica, CA, United States):1016-9.
- Kwan A, Ingrid E, Jiang M, Lim KKT. The cardiovascular risk of JAK inhibitors in treating rheumatic diseases. Int J Rheum Dis [Internet]. 2024;27(8). Disponible sur: https://www.embase.com/search/ results?subaction=viewrecord&id=L2031084172&from=export
- 10. Hammitzsch A, Lorenz G, Moog P. Impact of Janus Kinase Inhibition on the Treatment of Axial Spondyloarthropathies. Front Immunol [Internet]. 2020;11((Hammitzsch A., Ariane. Hammitzsch@gmail.com; Lorenz G.; Moog P.) Section of Rheumatology, Department of Nephrology, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany). Disponible sur: https://www.embase.com/search/results?subaction=viewrecord&id=L633312953&from=export
- Ljung L, Rantapää-Dahlqvist S. Biological therapies and lipid profile. Eur Musculoskelet Rev. 2011;6(4):240-7.
- Dimosiari A, Michailidis T, Patoulias D. Janus kinase inhibitors in patients with ankylosing spondylitis: Great news, but some concerns on cardiovascular disease risk still exist. Eur J Intern Med. 2022;103((Dimosiari A.) Department of Emergency Medicine, General Hospital "Hippokration", Thessaloniki, Greece):107-8.
- Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. Syst Rev. 29 mars 2021;10:89.
- Dhahri R, Bellakhal S, Boussaid S, Ammar LB, Bettaieb H, Gharsallah I, et al. Cardiovascular risk and JAK inhibitor for the treatment of spondyloarthritis: A systematic review protocol. la tun med. aout 2025; 103(8)
- Rudwaleit M, van der Heijde D, Landewé R, Listing J, Akkoc N, Brandt J, et al. The development of Assessment of SpondyloArthritis international Society classification criteria for axial spondyloarthritis (part II): validation and final selection. Ann Rheum Dis. juin 2009;68(6):777-83.
- Lorette G, Maruani A. Les recommandations CONSORT (CONsolidated Standards Of Reporting Trials). Ann Dermatol Vénéréologie. juin 2013;140(6-7):431-5.
- 17. Sterne JAC, Savović J, Page MJ, Elbers RG, Blencowe NS, Boutron I, et al. RoB 2: a revised tool for assessing risk of bias in randomised trials. BMJ. 28 août 2019;366:14898.
- 18. Baraliakos X, van der Heijde D, Sieper J, Inman RD, Kameda H, Li Y, et al. Efficacy and safety of upadacitinib in patients with ankylosing spondylitis refractory to biologic therapy: 1-year results from the open-label extension of a phase III study. Arthritis Res Ther. 2023;25:172.
- Baraliakos X, van der Heijde D, Sieper J, Inman RD, Kameda H, Maksymowych WP, et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis refractory to biologic therapy: 2-year clinical and radiographic results from the openlabel extension of the SELECT-AXIS 2 study. Arthritis Res Ther. 12 nov 2024;26(1):197.
- Deodhar A, Sliwinska-Stanczyk P, Xu H, Baraliakos X, Gensler LS, Fleishaker D, et al. Tofacitinib for the treatment of ankylosing spondylitis: a phase III, randomised, double-blind, placebocontrolled study. Ann Rheum Dis. août 2021;80(8):1004-13.
- Deodhar A, Akar S, Curtis J, Zorkany B, Magrey M, Wang C, et al. INTEGRATED SAFETY ANALYSIS of TOFACITINIB in ANKYLOSING SPONDYLITIS CLINICAL TRIALS. Ann Rheum Dis. 2022;81((Deodhar A.) Oregon Health&Science University, Division of Arthritis and Rheumatic Diseases, Portland, OR, United States):394-5.
- Deodhar A, Van Den Bosch F, Poddubnyy D, Maksymowych W, Van Der Heijde D, Kim T, et al. EFFICACY and SAFETY of UPADACITINIB in PATIENTS with ACTIVE NON-RADIOGRAPHIC AXIAL SPONDYLOARTHRITIS: a DOUBLE-BLIND, RANDOMIZED, PLACEBO-CONTROLLED PHASE 3 TRIAL. Ann Rheum Dis. 2022;81:9-10.
- van der Heijde D, Deodhar A, Wei JC, Drescher E, Fleishaker D, Hendrikx T, et al. Tofacitinib in patients with ankylosing spondylitis: a phase II, 16-week, randomised, placebo-controlled, dose-ranging study. Ann Rheum Dis. août 2017;76(8):1340-7.
- 24. van der Heijde D, Baraliakos X, Gensler L, Maksymowych W, Tseluyko V, Nadashkevich O, et al. Efficacy and safety of filgotinib, a selective Janus kinase 1 inhibitor, in patients with active ankylosing spondylitis

- (TORTUGA): results from a randomised, placebo-controlled, phase 2 trial. Lancet Lond Engl. 2018;392(10162):2378-2387.
- 25. van der Heijde D, Song I, Pangan A, Deodhar A, van den Bosch F, Maksymowych W, et al. Efficacy and safety of upadacitinib in patients with active ankylosing spondylitis (SELECT-AXIS 1): a multicentre, randomised, double-blind, placebo-controlled, phase 2/3 trial. Lancet Lond Engl. 2019;394(10214):2108-2117.
- van der Heijde D, Deodhar A, Maksymowych WP, Sieper J, Van den Bosch F, Kim TH, et al. Upadacitinib in active ankylosing spondylitis: results of the 2-year, double-blind, placebo-controlled SELECT-AXIS 1 study and open-label extension. RMD Open. juill 2022;8(2):e002280.
- van der Heijde D, Baraliakos X, Sieper J, Deodhar A, Inman R, Kameda H, et al. Efficacy and safety of upadacitinib for active ankylosing spondylitis refractory to biological therapy: a doubleblind, randomised, placebo-controlled phase 3 trial. Ann Rheum Dis. 2022;81(11):1515-1523.
- Dhahri R, Mejri I, Ghram A, Dghaies A, Slouma M, Boussaid S, et al. Assessment Tools for Pulmonary Involvement in Patients with Ankylosing Spondylitis: Is Diaphragmatic Ultrasonography Correlated to Spirometry? J Multidiscip Healthc. 11 janv 2023;16:51-61.
- Libby P. History of Discovery: Inflammation in Atherosclerosis. Arterioscler Thromb Vasc Biol. sept 2012;32(9):2045-51.
- Zhang Y, Lu N, Peloquin C, Dubreuil M, Neogi T, Aviña-Zubieta JA, et al. Improved survival in rheumatoid arthritis: a general populationbased cohort study. Ann Rheum Dis. févr 2017;76(2):408-13.
- 31. Li N, Gou ZP, Du SQ, Zhu XH, Lin H, Liang XF, et al. Effect of JAK inhibitors on high- and low-density lipoprotein in patients with rheumatoid arthritis: a systematic review and network meta-analysis. Clin Rheumatol. 1 mars 2022;41(3):677-88.
- Kotyla PJ, Islam MA, Engelmann M. Clinical Aspects of Janus Kinase (JAK) Inhibitors in the Cardiovascular System in Patients with Rheumatoid Arthritis. Int J Mol Sci. 7 oct 2020;21(19):7390.
- Xu D, Xu R, He L, Xu T, Zhang Z, Han D, et al. Comparison of Pathogenic Mechanisms Underlying Single and Recurrent Venous Thromboembolism Based on Gene Expression Profiling. Ann Vasc Surg. 1 oct 2016;36:252-9.
- Ramiro S, Nikiphorou E, Sepriano A, Ortolan A, Webers C, Baraliakos X, et al. ASAS-EULAR recommendations for the management of axial spondyloarthritis: 2022 update. Ann Rheum Dis. janv 2023;82(1):19-34.