
10

ARTIFICIAL INTELLIGENCE  

High performance COVID-19 screening using machine learning
Dépistage de haute performance du COVID-19 utilisant l'apprentissage machine

Youssef Zied Elhechmi1, Mehdi Mrad2, Mariem Gdoura3, Anissa Nouri4, Helmi Ben Saad5, Najla Ghrairi1, Henda Triki2  

1.  Hope Horizon International
2.  Laboratory of viruses, vectors and hosts: LR20IPT10, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur, 1002 Tunis-
Belvédère, Tunisia 
3. Laboratory of Clinical Virology, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur, 1002 Tunis-Belvédère, Tunisia.
4. Clinical investigation center: 2016CICIPT02, Institut Pasteur de Tunis, University of Tunis El Manar, 13, Place Pasteur, 1002 Tunis Belvédère, 
Tunisia.
5. MD (Faculty of Medicine of Sousse, Tunisia). PhD (Faculty of Medicine of Montpellier, France). Physiology and Functional Explorations. 
Laboratory of Physiology and Functionnal Explorations. Farhat Havhed Hospital. Sousse, Tunisia. Laboratory of Physiology. Faculty of Medicine 
of Sousse. Street Mohamed Karoui. Sousse 4000. Tunisia.

AbstrAct
Since the World Health Organization declared the Coronavirus Disease 2019 (COVID-19) pandemic as an international concern of public health 
emergency in the early 2020, several strategies have been initiated in many countries to prevent healthcare services breakdown and collapse of 
healthcare structures. The most important strategy was the increased testing, diagnosis, isolation, contact tracing to identify, quarantine and test 
close contacts. In this context, finding a rapid, reliable and affordable tool for COVID-19 screening was the main challenge to address the pandemic. 
Molecular diagnosis by reverse transcriptase polymerase chain reaction (RT-PCR), even though considered as the gold standard in the diagnosis of 
COVID-19, was time consuming and therefore does not fit the objective of rapid screening. In addition, serological tests to detect anti-severe acute 
respiratory syndrome coronavirus 2 (SARS-COV-2) antibodies suffered from low sensitivity. Prediction models based on machine-learning (ML) 
that combined several clinical features to estimate the risk of COVID-19 have been developed. To address these screening challenges, we created 
a ML model (MLM) based on gradient boosting method. We included several clinical features and the daily geographic prevalence of COVID-19 
cases in the MLM. The MLM was trained on 1554 cases (757 COVID-19), and tested on 547 cases (169 COVID-19). Our MLM successfully predicted 
RT-PCR positivity with an accuracy of 97.06%. Moreover, the variable sensitivity and specificity of our MLM depending on the disease geographic 
prevalence has introduced the concept of “dynamic” disease screening. In the context of future world pandemic emergencies, we believe that this 
MLM method can be very useful as a rapid, reliable and dynamic screening tool for contagious diseases, especially in the developing countries.
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résumé
Depuis que l’Organisation mondiale de la santé a déclaré la pandémie de coronavirus (COVID-19) urgence de santé publique en 2020, 
plusieurs stratégies ont été lancées pour prévenir l’effondrement des structures de santé. La stratégie la plus importante a été l’augmentation 
du dépistage, diagnostic, isolement, et recherche des contacts pour identifier, mettre en quarantaine et tester les contacts étroits. Dans ce 
contexte, la principale difficulté était de trouver un outil rapide, fiable et abordable pour le dépistage de la COVID-19. Le diagnostic moléculaire 
par "polymerase chaine reaction" (RT-PCR), bien que considéré comme le "gold-standard", était lent et ne correspond donc pas à l’objectif du 
dépistage rapide. En outre, les tests sérologiques visant à détecter les anticorps anti-coronavirus 2 souffraient d’une faible sensibilité. Pour 
relever ces défis, nous avons créé un modèle d'apprentissage machine basé sur la méthode du "gradient boosting". Nous avons inclus plusieurs 
caractéristiques cliniques avec la prévalence géographique quotidienne des cas COVID-19 dans le modèle. Le modèle a été entrainé sur 1554 
cas (757 COVID-19) et testé sur 547 cas (169 COVID-19). Notre modèle a prédit la positivité de RT-PCR avec une précision de 97,06%. De plus, 
la sensibilité et la spécificité variables du modèle dépendant de la prévalence géographique de la maladie ont introduit le concept du dépistage 
« dynamique » . Dans le contexte des futures urgences pandémiques mondiales, nous pensons que cette méthode peut être très utile comme 
outil de dépistage rapide, fiable et dynamique pour les maladies contagieuses, en particulier dans les pays en développement.
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INTRODUCTION

In December 2019, a previously unknown Beta-
coronavirus was discovered in a cluster of patients 
hospitalized for pneumonia in Wuhan, China [8]. Since 
then, the severe acute respiratory syndrome coronavirus 
2 (SARS-COV-2) spread to the rest of the world in what 
it was called the Coronavirus Disease 2019 (COVID-19) 
pandemic. To fight against this pandemic, several 
strategies have been initiated (eg; physical distancing, 
limiting contacts, avoiding nonessential indoor spaces 
and crowded outdoor settings, safeguarding persons 
most at risk for severe illness or death, protecting 
essential exposed workers, postponing travel, increased 
room air ventilation, enhanced hand hygiene, cleaning 
and disinfecting, widespread availability and use 
of effective vaccines. However, in terms of rapid 
prevention, the most important strategy may be the 
increased testing, diagnosis, isolation, contact tracing 
to identify, quarantine and test close contacts [4]. To 
reach this objective, the gold standard is the reverse 
transcription polymerase chain reaction (RT-PCR), 
however this technique takes several hours to confirm 
positivity and this time span is too long [9]. While 
waiting up to 7 days for RT-PCR confirmation of SARS-
COV-2 infection, patients may continue to infect other 
people [9]. Because of contagiousness considerations, 
patients who consult emergency departments cannot 
be dispatched to hospital wards before getting a RT-
PCR result confirming or denying their infection and this 
raises the issue of emergency department overcrowding 
and the risk of hospital contamination of patients. Wang 
et al. [10] reported that among 138 hospitalized patients 
with COVID-19, 41% were suspected to be infected via 
hospital related transmission. On the other hand, rapid 
testing for SARS-COV-2 methods showed a low sensitivity 
in some studies and a negative test might provide false 
reassurance [11]. In this context, the growing interest 
of the applications of artificial intelligence in medicine 
is strongly justified [12]. Several studies have been 
conducted to develop COVID-19 diagnosis systems using 
artificial intelligence (AI) techniques [13–16]. Including 
chest tomography (CT) scan, biological or clinical data, 
all these studies focused on the patient’s symptoms 
and explorations and proved a high performance in the 
prediction of COVID-19 diagnosis [16–21]. We aimed to 
create a machine-learning model (MLM) using clinical 
features along with geographic COVID-19 prevalence for 
the prediction of SARS-Cov-2 RT-PCR positivity.

METHODS

Study design

This was a prospective observational study including all 
patients screened for COVID-19 using RT-PCR performed 
in the Virology laboratory of the Pasteur Institute of Tunis 
from March 2020 to October 2020, covering the first and 
the ascension of the second wave of COVID-19 pandemic 
in Tunisia. This study obtained the consent of the Ethics 

Committee of the Pasteur Institute of Tunis.

Population

Patients with clinical suspicion of COVID-19 were selected 
in all the 24 governorates of Tunisia.

Applied protocol

COVID-19 clinical suspicion was based on the presence 
of at least one symptom evoking COVID-19. Patients 
were sampled using a nasopharyngeal swab, and a 
sheet was carefully filled by a physician including fever, 
asthenia, anosmia, ageusia, headache, myalgia, throat 
pain, dyspnea, cough, rhinitis, chest pain, diarrhea, 
vomiting, nausea, abdominal pain. The sheet was, then, 
sent to the virology lab of the Pasteur Institute with the 
samples according to the World Health Organization 
(WHO) guidelines for packaging and shipment related 
to SARS-COV-2 [22]. Viral RNA was extracted from 200 
µl of nasopharyngeal swabs using the QIAamp viral 
RNA Mini Kit (Qiagen, Hilden, Germany). Viral RNA was 
subsequently amplified and detected using a real-time 
fluorescent RT-PCR in house assay approved by the 
WHO: the Hong Kong university protocol targeting two 
genome regions: N and Orf 1b nsp 14 [23]. The N gene 
RT-PCR is recommended as a screening assay and the 
Orf1b assay as a confirmatory one [23]. Both should give 
cycle threshold (Ct) value < 40 to consider the sample as 
positive [23]. Suitable biosafety precautions were taken 
for handling human clinical specimens suspected to be 
SARS-COV-2 infections [24].
Daily incidence (active cases/100’000 inhabitants) of 
new COVID-19 cases by governorate were collected from 
the public data communicated by the Tunisian Health 
Ministry.
All the parameters mentioned in the study form were 
included in the statistical analysis and in the model 
training in addition to the COVID-19 incidence. A statistical 
analysis was conducted to look for parameters correlated 
with the RT-PCR positivity using Epi info software (CDC, 
USA) [25]. We selected 75% of the cases to train a MLM 
based on extreme gradient boosting method, and 25% 
of the cases were used to test the MLM and assess its 
accuracy for the prediction of positive RT-PCR. “p” was 
considered positive when ≤ 0.05.
Gradient boosting refers to a class of ensemble machine 
learning algorithms that can be used for classification 
or regression predictive modeling problems. Gradient 
boosting is a method of converting weak learners into 
strong learners. It trains several models in a gradual, 
additive and sequential manner and identify the 
shortcomings by using gradient descent optimization 
algorithm in the loss function. The latter is a measure 
indicating how good the model’s coefficient are at fitting 
the data to predict. A definitive objective of the gradient 
boosting method is to discover a function (ie; F(x)), which 
limits its loss function “L” (ie; y, F(x)), through iterative 
back-fitting as

F*= argmin
F Ey,x L(y,F(x))



12

F*: This represents the optimal model that we're trying 
to find, which minimizes the error (loss) between the 
predicted values and the actual values.
arg minF: Represents the function that gives the smallest 
predicted value of the expression following it. This means 
we have to find a predicted value/F for which the loss 
function is minimum.
Ey,x: This denotes the expected value over the joint 
distribution of the true target values y and the input 
features x.
L(y,F(x)): This is the loss function (or error function). 
It measures how far off the predictions F(x) are from 
the actual values y. Common loss functions include 
Mean Squared Error (for regression) or Log Loss (for 
classification).
In gradient boosting, the goal is to find a model F(x) that 
minimizes the loss function L(y,F(x)), where y represents 
the true values and F(x) represents the predicted values. 
The process of minimizing this error involves iterative 
steps where at each stage, the algorithm adds a new 
“weak learner” to correct the errors made by the previous 
model. 

By definition, a supported predicted model is a weighted 
straight of the base learners

Where p (x; a) is a base learners parameter [14,26].
Extreme gradient boosting (XGBoost) is an efficient 
open-source implementation of the gradient boosting 
algorithm [1]. Accordingly, the two main reasons to use 
XGBoost are execution speed and model performance. 
The XGBoost hyperparameters tuned in this study 
included Eta, max depth, min child weight, subsample, 
gamma and reg alpha. The hyperparameters where 
tuned to make balance between high performance of the 
model and low risk of over-fitting. 
Eta = 0.56: Makes the model more robust by shrinking 
the weights on each step
Max depth = 6: Represents the maximum depth of a 
tree. Used to control over-fitting, as higher depth will 
allow model to learn relations very specific to a particular 
sample. Typical values range from 3 to 10.
Reg Alpha = 1.2: Represents the L1 regularization term 
on weight (analogous to Lasso regression). Can be used 
in case of very high dimensionality so that the algorithm 
runs faster when implemented. 
Min child weight = 0:  Defines the minimum sum of 
weights of all observations required in a child. This refers 
to min “sum of weights” of observations. Used to control 
over-fitting. Higher values prevent a model from learning 
relations which might be highly specific to the particular 
sample selected for a tree. Too high values can lead to 
under-fitting. Default value is 1.
Subsample = 0.2: Denotes the fraction of observations to 
be randomly samples for each tree. Lower values make 
the algorithm more conservative and prevents overfitting 
but too small values might lead to under-fitting. Typical 
values range from 0.5 to 1.
Gamma = 0: A node is split only when the resulting split 

gives a positive reduction in the loss function. Gamma 
specifies the minimum loss reduction required to make 
a split. Makes the algorithm conservative. The values can 
vary depending on the loss function and is recommended 
to be tuned.

Python code

from sklearn.model_selection import train_test_split
from xgboost import XGBClassifier
X_train, X_test, y_train, y_test=train_test_split(X,y,test_
size=0.25, random_state=0)
classifier=XGBClassifier(eta=0.56, max_depth=6, reg_
alpha=1.2, 
min_child_weight=0,subsample=0.2,gamma=0)
classifier.fit(X_train, y_train)

The loss function used to train the model was the Mean 
Squared Error (MSE) which is the default loss function of 
the extreme gradient boosting algorithm.

Cross validation process was performed using the area 
under the receiver operating curve as metrics:

params = {"objective":"binary:logistic",'eta':0.56, 'max_
depth':6, 'reg_alpha':1.2, 
          'min_child_weight':0, 'subsample': 0.3,'gamma': 0}
xgb_cv = cv(dtrain=dataMatrix, params=params, 
nfold=3,
           num_boost_round=50, early_stopping_rounds=10, 
metrics="auc", as_pandas=True, seed=123)

To estimate the prediction accuracy of the MLM, we used 
the area under the receiver operating characteristics 
curve (AURCC). A receiver operating characteristics curve 
is a graph representing the performance of a classification 
model for all classification thresholds. The curve plots 
the rate of true positives based on the rate of false 
positives. Different model’s probability thresholds (eg; 
25%, 50%, 75%) were then evaluated using sensitivity 
(recall), specificity (selectivity), positive (precision) and 
negative predictive values, and the Matthews correlation 
coefficient (MCC).

Where TP is true positive; TN is true negative; FP is false 
positive; and FN is false negative. 
The MCC is used in machine learning as a measure of the 
quality of binary (two-class) classifications [2]. The MCC 
ranges from -1 to 1. It takes into account TP, TN, FP, and 
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𝑻𝑻𝑷𝑷 + 𝑭𝑭𝑷𝑷 
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FN, and is generally regarded as a balanced measure, 
which can be used even if the classes are of very different 
sizes [3]. The closer the value is to 1, the more powerful 
the model is. The closer the value is to 0, the lower the 
power of the model.

RESULTS

Between March and October 2020, 1884 samples were 
screened by RT-PCR for SARS-COV-2, 928 (49.25%) were 
positive and 956 (50.74%) were negative. Data about the 
prevalence of active cases per 100’000 inhabitants during 
the period of the study were collected from the Tunisian 
national health ministry (Figure 1). There was no missing 
data in this study.

A statistically significant association was found between 
positive RT-PCR test and fever, asthenia, anosmia, 
ageusia, headache, myalgia, cough, dyspnea, chest pain, 
diarrhea, vomiting (Table1).

The prevalence of COVID-19 active cases was significantly 
associated with the RT-PCR positivity. Median [IQR] active 

cases in negative RT-PCR group and positive RT-PCR 
group were respectively 32.77 [27.23-34.89] and 608.77 
[134.19-705.96] (p < 0.001).
We used 1413 (75%) cases to train the MLM for the 
prediction of the SARS-Cov-2 RT-PCR result. We used 471 
(25%) cases to test the MLM for the prediction of RT-PCR 
result.
The new MLM was trained to predict SARS-Cov-2 RT-PCR 
positivity in terms of probability ranging from 0 (0%) to 1 
(100%). When tested for the prediction of the SARS-Cov-2 
RT-PCR, the MLM showed an accuracy of 95.75%, and the 
AURCC was 0.990 (95% confidence interval (CI)) [0.983 - 
0.997] (Figure 2).
When tested for the prediction of the RT-PCR positive test, 
without using active cases as a feature, the MLM showed 
an accuracy of 80.0%, and the AURCC was significantly 
lower than the model trained with active cases 0.881 
(95%CI) [0.852 - 0.911] (p < 0.001) (Figure 2).

The cross validation processed on the dataset showed a 
robust model as shown in Figure 4. The AURCC ranged 
from 0.958 to 0.984.

The weightings of the parameters showed a significant 
difference between the model using active cases versus 
the model trained without active cases (Figure 5).

𝐌𝐌𝐂𝐂𝐂𝐂 = 𝐓𝐓𝐏𝐏 ∗ 𝐓𝐓𝐍𝐍 − 𝐅𝐅𝐏𝐏 ∗ 𝐅𝐅𝐍𝐍
  𝐓𝐓𝐏𝐏 + 𝐅𝐅𝐏𝐏 ∗  𝐓𝐓𝐏𝐏 + 𝐅𝐅𝐍𝐍 ∗  𝐓𝐓𝐍𝐍 + 𝐅𝐅𝐏𝐏 ∗ (𝐓𝐓𝐍𝐍+ 𝐅𝐅𝐍𝐍)
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Figure 1. Prevalence of active cases of COVID-19 (per 100’000 
inhabitants) from March 1st to October 31st, 2020.

Clinical feature Negative RT-PCR1

(n=956)
Positive RT-PCR1

(n=928)
p value

Fever 24.50% 67.30% <0.001
Asthenia 13.10% 32.20% <0.001
Anosmia 0.40% 15.30% <0.001
Ageusia 0.10% 8.90% <0.001
Headache 13.20% 25.20% <0.001
Myalgia 9.20% 29.20% <0.001
Sore throat 4.30% 5.30% 0.313
Cough 35.30% 59.50% <0.001
Dyspnea 16.10% 36.30% <0.001
Rhinitis 10.90% 13.10% 0.130
Chest pain 4.70% 7.10% 0.027
Diarrhea 6.70% 14.00% <0.001
Vomiting 3.80% 6.90% 0.002
Abdominal pain 4.10% 5.80% 0.081

Table 1. Correlation between clinical symptoms and reverse 
transcription polymerase chain reaction test for SARS-Cov-2.

1 SARS-Cov-2 RT-PCR
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Figure 2. 2A: The area under the receiver operating characteristics 
curve of the machine-learning model tested for the prediction of a 
positive SARS-Cov-2 Reverse transcription polymerase chain reaction. 
2B: The area under the receiver operating characteristics curve of the 
machine-learning model tested for the prediction of the SARS-Cov-2 
positive Reverse transcription polymerase chain reaction, excluding 
the geographic prevalence of Coronavirus Disease 2019 outbreak from 
the model.
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The three main features of the model with active cases 
were active cases incidence, fever and cough while the 
three main features in the model without active cases 
were fever, cough and dyspnea (Table 2).

The cut-off value of the new AI model for the prediction of 
RT-PCR positive test with the best Sensitivity + Specificity 
was 0.50 (50%).
The sensitivity of the new AI model for the prediction of 
RT-PCR positive test was 96.54% at the threshold value 
of 0.25 (25%). The specificity of the new AI model for 
the prediction of RT-PCR positive test was 99.05% at the 
threshold value of 0.75 (75%). For the threshold value 
of 0.5 (50%), the sensitivity of the new AI model for the 
prediction of RT-PCR positive test was 93.84% and the 
specificity 98.1%. Sensitivity, specificity, positive and 
negative predictive values and MCC for 0.25, 0.50, 0.75 
thresholds of the AI model predictions are shown in Table 
3. The MCC score at 0.916 indicates that the model is 
making strong and reliable predictions.

DISCUSSION

Our MLM based on clinical features and COVID-19 
geographic prevalence was able to accurately predict 
positive RT-PCR of SARS-COV-2 infection. The high 
prediction accuracy of the MLM was supported by an 
AURCC of 0.990.
Since the first case confirmed in Wuhan (China) in 
December 2019, the onset of the new COVID-19 
pandemic became a real challenge for the whole world 
healthcare systems [27]. The outbreak continued to 
spread all across the world and the WHO declared the 
pandemic as an international concern of public health 
emergency in the early 2020 [28]. The key strategy 
in terms of rapid control of the COVID-19 was the 
increased disease screening which led to early isolation 
and contact tracing [4]. With the 2020 COVID-19 
outbreak, countless tests needed to be performed on 
symptomatic individuals, contacts and travelers [5]. The 
RT-PCR method suffered from shortcoming as the lack 
of accessibility in developing countries, or the significant 
delay to get the result, a time span that is not suitable 
regarding the effective public health containment 
measures [9]. The rapid tests, a serological method that 
detects anti SARS-COV-2 antibodies (Immunoglobulin (Ig) 
G/IgM) with a time to result of 20 minutes suffered from 
low sensitivity and drastically limited their usefulness 
to contain the pandemic outbreak [11]. To address this 
problem, machine-learning algorithms provide a realistic 
promising approach as a diagnosis and/or screening tool 
in the medical setting [16–21,29–31]. Recent studies 
showed that supervised and deep machine learning can 
be used as a reliable tool to support clinicians in the 
diagnosis step of the SARS-COV-2 infection, especially 
using CT scan images [32,33]. Using the deep learning 
CT scan images, some authors achieved a classification 
results for COVID-19 versus non COVID-19 of 0.996 
AURCC (95%CI: 0.989 to 1.000) on Chinese control 
and infected patients, however, it is not clear whether 
authors included in the training set, CT scan images of 
viral pneumonia which can lead to confusion especially 
with COVID-19 images abnormalities [33]. In another 
study, deep MLM based on CT scan images achieved an 
AURCC of 0.99 and a recall (sensitivity) of 93%, however, 
the training dataset included only bacterial infection CT 
scan and therefore we can only assume that the MLM will 
be accurate even with other viral infections [34]. Since CT 
scan is not suitable for a screening strategy, some authors 
focused on clinical features to predict COVID-19 infection 

  Elhechmi & al. COVID-19 screening using machine learning

 

0,0%

5,0%

10,0%

15,0%

20,0%

25,0%

30,0%
ABDOMINAL PAIN

ACTIVE CASES

AGUESIA

ANOSMIA

ASTHENIA

CHEST PAIN

COUGH

DIARRHEADYSPNEA

FEVER

HEADACHE

MYALGIA

RHINITIS

SORE THROAT

VOMIT

With Active Cases Without Active Cases

Figure 5. Features weightings regarding the two gradient boosting 
models, with active cases versus without active cases.

With Active Cases Without Active Cases

ABDOMINAL PAIN 4.6% 5.0%

ACTIVE CASES 25.1% 0.0%

AGUESIA 2.9% 3.3%

ANOSMIA 3.7% 5.2%

ASTHENIA 6.4% 7.8%

CHEST PAIN 3.7% 4.8%

COUGH 10.0% 10.0%

DIARRHEA 4.9% 5.9%

DYSPNEA 5.8% 9.6%

FEVER 12.5% 17.3%

HEADACHE 6.5% 7.5%

MYALGIA 6.2% 9.0%

RHINITIS 3.5% 6.5%

SORE THROAT 1.9% 4.4%

VOMIT 2.5% 3.6%

Table 2. Detailed weightings of features used to train the gradient 
boosting models

Statistical parameter 25%1 50% 1 75% 1

Sensitivity 96.54% 93.84% 90.77%
Specificity 95.73% 98.10% 99.05%
Positive predictive value 96.54% 98.39% 99.16%
Negative predictive value 95.73% 92.85% 89.70%
Matthews coefficient of correlation 0.923 0.916 0.893

Table 3. Statistical evaluation of the machine-learning model for 
the prediction of positive Reverse Transcription Polymerase Chain 
Reaction test using three different thresholds.

1 Probability of positive SARS-Cov-2 RT-PCR predicted by the machine learning model.
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[17,35]. A MLM based on healthcare workers clinical 
features achieved an AURCC of 0.754 (95%CI: 0.662 to 
0.846), a recall (sensitivity) of 82.4% and a specificity of 
59.2% [35]. Authors did not use contact with confirmed 
case, which could have increased the accuracy of the 
model, and limited their model on clinical features. Zoabi 
et al. [17] trained their MLM on clinical parameters 
but added contact with confirmed case to improve the 
accuracy of the model in the prediction of COVID-19 
infection. They achieved an AURCC of 0.900 (95%CI: 
0.892 to 0.905). When they trained and tested their MLM 
after filtering out features of high bias, they obtained an 
AURCC of 0.962, and contact with confirmed case had 
the most important impact on the model output [17]. Tse 
et al. [20] trained a MLM on a large number of features 
including age, sex, serum levels of neutrophil (continuous 
and ordinal), serum levels of leukocytes (continuous 
and ordinal), serum levels of lymphocytes (continuous 
and ordinal), result of CT scans, result of chest X-rays, 
reported symptoms (eg; diarrhea, fever, coughing, sore 
throat, nausea, and fatigue), body temperature, and 
underlying risk factors (eg; renal diseases, and diabetes 
mellitus). They also included a dataset of H1N1 influenza 
(viral respiratory disease transmitted by the type A 
Influenza virus family) patients in order to help the model 
distinguish COVID-19 patients from Influenza patients. 
The trained XGBoost model successfully distinguished 
COVID-19 patients from influenza patients with a recall 
(sensitivity) of 92.5% and a specificity of 97.9%. 
In our study, we addressed the diagnosis support of SARS-
COV-2 infection from another point of view. We aimed to 
focus on making a MLM that takes into consideration the 
incidence of COVID-19 active cases, in addition to clinical 
symptoms. This method raised a new concept that 
we called “dynamic disease screening”. The objective 
was to train the MLM to “dynamically” raise COVID-19 
probability when the local incidence of active cases is 
high, and lower the COVID-19 probability when the local 
incidence of active cases is low, since the same symptoms 
may be related to other contagious diseases, which is 

instinctively a logical reflection that a physician would 
make. In the real time scenarios, the clinical symptoms 
will be provided by the user (patient or physician) and 
the previous day incidence data will be automatically 
collected by the application using the MLM model (or by 
the user regarding a communicated value of incidence in 
the own region when provided). In our model, the main 
features were COVID-19 active cases incidence, fever 
and cough. Fever and cough were the most frequent 
symptoms in the positive RT-PCR group. These results 
were confirmed by other studies showing fever and cough 
as the most common symptoms at early presentation 
[6,7]. We must acknowledge that these symptoms are 
common to several other diseases such as influenza or 
community acquired pneumonia. We think that is where 
the power of the incidence parameter comes into play 
in our model and puts this parameter at the top of the 
weighting. However, we cannot assert with certainty 
how the incidence parameter would help the model 
distinguish between COVID-19 and other clinically close 
diseases, since the model was not trained on a dataset 
including several diseases. The solution presented in this 
study is an early, accessible, simple and reliable tool to 
screen SARS-COV-2 infection using a supervised MLM. 
We trained the model to predict positive RT-PCR result as 
a gold standard for the diagnosis of COVID-19. The results 
of our study showed that our MLM was able to accurately 
predict positive RT-PCR of SARS-COV-2 infection. The 
high prediction accuracy of the MLM was supported by 
an AURCC of 0.990. As previously mentioned, several 
authors studied the potential applications of machine 
learning as a diagnosis support tool for COVID-19. The 
authors used different datasets, different features and 
different algorithms to train their models, therefore, 
it is very difficult to make a fair comparison regarding 
the performances. To make an objective and scientific 
comparison, it will be necessary to test the different 
machine learning models on the same population. These 
results are summarized in Table 4.

Authors Country Data sources Number of cases ML algorithms Performances
Elhechmi et al. Tunisia Pasteur Institute, Tunis 1884 XGBoost* AURCC [95%CI]: 0.990 [0.983-0.997]

Sensitivity: 0.94
Specificity: 0.98
Accuracy: 0.96

Zoabi et al. [17] Occupied 
Palestine

Occupied Palestine Ministry of Health 51831 Gradient boosting AURCC [95%CI]: 0.900 [0.892-0.905]

Batista et al. [16] Brazil Brazil Ministry of Health 235 Neural network, 

RF*, LR*, SVM*, 

Gradient boosting

AURCC: 0.85.
Sensitivity: 0.68.
Specificity: 0.85;
Brier Score: 0.16

Garcia et al. [18] Brazil Public Health Department of 
Florianópolis

3916 RF* Accuracy [95%CI]: 0.66 [0.62-0.69] 
Sensitivity [95%CI]: 0.65 [0.57-0.75] 
Specificity [95%CI]: 0.66 [0.60-0.70]

Mei et al. [19] China 18 medical centers in 13 provinces in 
China

419 CNN*, SVM*, RF*, 
MLP*

AURCC: 0.92

Tse Li et al. [20] USA Public data * 413 XGBoost Sensitivity 0.925
Specificity 0.979

Avila et al. [21] Brazil Hospital Israelita Albert Einstein (HIAE 
- São Paulo, Brazil)

510 Naïve Bayes 
Classifier

Sensitivity: 0.767
Specificity 0.767

Table 4. Performances of several machine learning models for the COVID-19 screening published in literature

*Public data: https://github.com/yoshihiko1218/COVID-19ML, KNHIS: Korean National Health Insurance Service, SVM: Support Vector Machines, RF: Random Forest, LR: Logistic Regression, CNN: 
Convolutional Neural Networks, MLP: Multi-layer perceptron, AURCC: Area under the receiver operating characteristics curve, XGBoost: Extreme Gradient Boosting CI: Confidence Interval.
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This study has strengths as the number of cases collected, 
physicians noticed the features, and therefore it is very 
unlikely that a present symptom was not reported. This 
study included data about COVID-19 daily active cases 
incidence per 100’000 inhabitants, and this parameter 
generated what we called “dynamic” screening process 
since the prediction probability of the disease generated 
by the MLM became variable depending on the 
geographic and time incidence of COVID-19 active cases. 
We must however acknowledge that this study has some 
limitations. We relied only on the data reported to the 
laboratory of virology of the Pasteur Institute of Tunis. 
These data have some missing features as contact with 
a COVID-19 case, time since onset of symptoms. This 
is a national study, which is subject to several specific 
parameters as the country policies toward COVID-19 
pandemic or climate conditions, and we must be 
precautious before generalizing the MLM predictions 
to other countries. Finally, the high accuracy of our 
model may cause an overfitting issue when tested on 
independent cases and therefore this accuracy needs to 
be confirmed by other studies.

CONCLUSIONS

This study showed that a MLM was able to accurately 
predict SARS-COV-2 RT-PCR positivity using simple clinical 
and epidemiological features. Moreover, we introduced 
a new concept of “dynamic screening” since we showed 
a significantly improved sensitivity and specificity of the 
MLM when we included COVID-19 real time geographic 
incidence. All the features used in our model are 
commonly available and therefore can be used by citizens 
or physicians for a rapid, accessible and large screening 
of COVID-19 cases. In the context of world healthcare 
future pandemic emergencies, we believe that this 
MLM method can be very useful as a rapid and reliable 
screening tool for contagious diseases, especially in the 
developing countries.
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